如何读懂 STATSPACK 报告 amp;Toad 结合

如题所述

  说在前面,很容易被忽略的几个点:在读报告的时候,我们首先需要看清楚,留意3个内容,这份报告所对应的数据库版本,cluster方式,以及报告的时间段。尤其需要注意的就是时间段,脱离了时间段的statspck将是毫无意义的,甚至会得出错误的结果。 STATSPACK report for

  1、报表头信息
  
  /* 报表头信息,数据库实例相关信息,包括数据库名称、ID、版本号及主机明等信息。 另外,重点还需要关注一下报告产生的时间跨度, 以及并发数.
  

  2、实例负载档信息
  

  下面详细说明Load Profile各项含义

  Redo size:每秒产生的日志大小(单位字节),可标志数据变更频率, 数据库任务的繁重与否。通常在很繁忙的系统中日志生成量可能达到上百k,甚至几百k

  Logical reads:平决每秒产生的逻辑读的block数。Logical Reads= Consistent Gets + DB Block Gets, block在内存中,我们每一次读一块内存,就相当于一次逻辑读

  Block changes:每秒block变化数量,数据库事物带来改变的块数量。

  Physical reads:平均每秒数据库从磁盘读取的block数。

  Physical writes:平均每秒数据库写磁盘的block数。

  User calls:每秒用户调用次数。

  Parses:每秒解析次数,包括fast parse,soft parse和hard parse三种数量的综合。软解析每秒超过300次意味着你的"应用程序"效率不高,调整session_cursor_cache。在这里,fast parse指的是直接在PGA中命中的情况(设置了session_cached_cursors=n);soft parse是指在shared pool中命中的情形;hard parse则是指都不命中的情况。 Hard parses:每秒产生的硬解析次数, 每秒超过100次,就可能说明你绑定使用的不好,也可能是共享池设置不合理。这时候可以启用参数cursor_sharing=similar|force,该参数默认值为exact。但该参数设置为similar时,存在bug,可能导致执行计划的不优。 80%的系统的慢都是由于这个原因所导致的, 而hard parse的根源,基本都是由于不使用bind var所导致的, 还有就是为了维护internal structure,需要使用latch,latch是一种Oracle低级结构,用于保护内存资源,是一种内部生命周期很短的lock,大量使用latch将消耗大量的cpu资源。

  Sorts:每秒产生的排序次数。

  Logons:每秒登陆的次数。

  Executes:每秒执行次数。

  Transactions:每秒产生的事务数,反映数据库任务繁重与否。

  Blocks changed per Read: 13.28 %

  Recursive Call %: 80.21

  Rollback per transaction %: 0.03

  说明如下:
  
  1) Blocks changed per Read:在每一次逻辑读中更改的块的百分比。

  2) Rollback per transaction %:看回滚率是不是很高,因为回滚很耗资源 ,如果回滚率过高,可能说明你的数据库经历了太多的无效操作 ,过多的回滚可能还会带来Undo Block的竞争 该参数计算公式如下: Round(User rollbacks / (user commits + user rollbacks) ,4)* 100% 。通常应该小于10%为好

  3) Recursive Call %:递归调用的百分比,如果有很多PL/SQL,那么这个值就会比较高。

  4) Rows per Sort:平均每次排序操作的行数。

  3、实例有效性信息
  

  实例的有效性,这部分值越接近100越好,分项内容详细说明如下:

  1) Buffer Nowait %:在缓冲区中获取Buffer的未等待比率。Buffer Nowait的这个值一般需要大于99%。否则可能存在争用,可以在后面的等待事件中进一步确认。

  2) Redo NoWait %:在Redo缓冲区获取Buffer空间的未等待比率。当redo buffer达到1M时,就需要写到redo log文件,所以一般当redo buffer设置超过1M,不太可能存在等待buffer空间分配的情况。当前,一般设置为2M的redo buffer,对于内存总量来说,应该不是一个太大的值。

  3) Buffer Hit %:数据块在数据缓冲区中的命中率,通常应在95%以上。否则,小于95%,需要调整重要的参数,小于90%可能是要加db_cache_size。一个高的命中率,不一定代表这个系统的性能是最优的,比如大量的非选择性的索引被频繁访问,就会造成命中率很高的假相(大量的db file sequential read),但是一个比较低的命中率,一般就会对这个系统的性能产生影响,需要调整。命中率的突变,往往是一个不好的信息。如果命中率突然增大,可以检查top buffer get SQL,查看导致大量逻辑读的语句和索引,如果命中率突然减小,可以检查top physical reads SQL,检查产生大量物理读的语句,主要是那些没有使用索引或者索引被删除的。

  4) In-memory Sort %:在内存中的排序率。如果低于95%,可以通过适当调大初始化参数PGA_AGGREGATE_TARGET或者SORT_AREA_SIZE来解决,注意这两个参数设置作用的范围时不同的,SORT_AREA_SIZE是针对每个session设置的,PGA_AGGREGATE_TARGET则时针对所有的sesion的。

  5) Library Hit %:STATEMENT在共享区的命中率,通常应该保持在95%以上,否则需要要考虑:加大共享池;使用绑定变量;修改cursor_sharing等参数。

  6) Soft Parse %:sql在共享区的命中率,小于<95%,需要考虑绑定,如果低于80%,那么就可以认为sql基本没有被重用。

  7) Execute to Parse %:一个语句执行和分析了多少次的度量。这个数字也应该是越大越好,接近100%最好, 本例中,差不多每execution 5次需要一次parse。所以如果系统Parses > Executions,就可能出现该比率小于0的情况。该值<0通常说明shared pool设置或者语句效率存在问题,造成反复解析,reparse可能较严重,或者是可能同snapshot有关,通常说明数据库性能存在问题。

  8) Latch Hit %:要确保>99%,否则存在严重的性能问题。当该值出现问题的时候,我们可以借助后面的等待时间和latch分析来查找解决问题。

  9) Parse CPU to Parse Elapsd %:计算公式为:Parse CPU to Parse Elapsd %= 100*(parse time cpu / parse time elapsed)。即:解析实际运行时间/(解析实际运行时间+解析中等待资源时间)。如果该比率为100%,意味着CPU等待时间为0,没有任何等待。

  10) % Non-Parse CPU:计算公式为:% Non-Parse CPU =round(100*1-PARSE_CPU/TOT_CPU),2)。如果这个值比较小,表示解析消耗的CPU时间过多。与PARSE_CPU相比,如果TOT_CPU很高,这个比值将接近100%,这是很好的,说明计算机执行的大部分工作是执行查询的工作,而不是分析查询的工作。

  (上图中的下半部分)
  
  1) Memory Usage %:正在使用的共享池的百分率。这个数字应该长时间稳定在75%~90%。如果这个百分比太低,表明共享池设置过大,带来额外的管理上的负担,从而在某些条件下会导致性能的下降。如果这个百分率太高,会使共享池外部的组件老化,如果SQL语句被再次执行,这将使得SQL语句被硬解析。在一个大小合适的系统中,共享池的使用率将处于75%到略低于90%的范围内。

  2) % SQL with executions>1:这是在共享池中有多少个执行次数大于一次的SQL语句的度量。也应该大为好,小则表示很多sql只被执行了一次,说明没有使用绑定变量, 在一个趋向于循环运行的系统中,必须认真考虑这个数字。在这个循环系统中,在一天中相对于另一部分时间的部分时间里执行了一组不同的SQL语句。在共享池中,在观察期间将有一组未被执行过的SQL语句,这仅仅是因为要执行它们的语句在观察期间没有运行。只有系统连续运行相同的SQL语句组,这个数字才会接近100%。这里显示,在这个共享池中几乎有80%的SQL语句在14分钟的观察窗口中运行次数多于一次。剩下的20%的语句可能已经在那里了--系统只是没有去执行。

  3) % Memory for SQL w/exec>1:这是与不频繁使用的SQL语句相比,频繁使用的SQL语句消耗内存多少的一个度量。这个数字将在总体上与% SQL with executions>1非常接近,除非有某些查询任务消耗的内存没有规律。在稳定状态下,总体上会看见随着时间的推移大约有75%~85%的共享池被使用。如果Statspack报表的时间窗口足够大到覆盖所有的周期,执行次数大于一次的SQL语句的百分率应该接近于100%。这是一个受观察之间持续时间影响的统计数字。可以期望它随观察之间的时间长度增大而增大。 小结:通过ORACLE的实例有效性统计数据,我们可以获得大概的一个整体印象,然而我们并不能由此来确定数据运行的性能。当前性能问题的确定,我们主要还是依靠下面的等待事件来确认。我们可以这样理解两部分的内容,hit统计帮助我们发现和预测一些系统将要产生的性能问题,由此我们可以做到未雨绸缪。而wait事件,就是表明当前数据库已经出现了性能问题需要解决,所以是亡羊补牢的性质。 接下来,开始查看wait事件。
温馨提示:内容为网友见解,仅供参考
无其他回答

如何读懂 STATSPACK 报告 amp;Toad 结合
说在前面,很容易被忽略的几个点:在读报告的时候,我们首先需要看清楚,留意3个内容,这份报告所对应的数据库版本,cluster方式,以及报告的时间段。尤其需要注意的就是时间段,脱离了时间段的statspck将是毫无意义的,甚至会得出错误的结果。 STATSPACK report for 1、报表头信息 \/* 报表头信息,数据库实例相关信息,包括...

相似回答
大家正在搜