1、喷雾器
喷雾器是利用空吸作用将药水或其他液体变成雾状,均匀地喷射到其他物体上的器具,由压缩空气的装置和细管、喷嘴等组成。在农村,喷雾器是防治病虫害不可缺少的重要农具。
2、化油器
汽油发动机的化油器,与喷雾器的原理相同。化油器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。
3、笔筒吹球
一支笔筒,向大口这边吹气,小口上放一个小球,小球能在空气中旋转。
4、压气机
燃气涡轮发动机中利用高速旋转的叶片给空气作功以提高空气压力的部件。在动叶中,气体相对速度减小,压力升高,静叶中绝对速度减小,使气体静压升高。
5、泥沙运动
泥沙运动时,由于水流流动,泥沙颗粒顶部和底部的流速不同,前者为水流的运动速度,后者则为颗粒间渗透水的流动速度,比水流的速度要小得多,根据伯努利定律,顶部流速高,压力小,底部流速低,压力高。这样造成的压差产生了上举力。
参考资料来源:
1、汽油发动机的汽化器,与喷雾器的原理相同
汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入。
2、球类比赛中的"旋转球"
旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它- ~起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,“飞行轨迹要向 下弯曲。
3、飞机在天上飞的升力
因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状,上:” 下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。
4、 喷雾器的应用
让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔”下边的细管升.上来,从细管的上口流出后,空气流的冲击,被喷成雾状。
5、应用于环保空调
环保空调就是应用的这个原理,一面进风,一面进水,以此来保持室内温度。
6、列车站设置的警戒线
列车进站的时候速度很快,车厢附近的空气被带着也会快起来,越靠近车厢的空气流速越快,越远的地方空气流速越慢。还是根据伯努利原理,靠近车厢的地方压力小,远离车厢的地方压力大,二者之间有压力差,因此,在站台,上候车,如果你靠轨道太近,就会感觉后面好像有人推你往前,很可能造成事故,其实是因为压力差把你推过去的。
7、帆船的动力
一般人对于帆船往往认为是被风推着跑的。其实风的动力以两种形式作用于帆,帆船的最大动力来源是所谓的“伯努利效应”。
扩展资料:
1、丹尼尔·伯努利在1726年提出了“伯努利原理”。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。
2、伯努利原理往往被表述为p+1/2ρv2+ρgh=C,这个式子被称为伯努利方程。式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。
3、需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体。
参考资料:百度百科—伯努利原理
生活应用有:
1、汽油发动机的化油器,与喷雾器的原理相同。化油器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。
2、喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。
3、一支笔筒,向大口这边吹气,小口上放一个小球,小球能在空气中旋转。
4、泥沙运动时,由于水流流动,泥沙颗粒顶部和底部的流速不同,前者为水流的运动速度,后者则为颗粒间渗透水的流动速度,比水流的速度要小得多,根据伯努利定律,顶部流速高,压力小,底部流速低,压力高。
5、在漏斗宽大处放一小球,用手抵住,在小口中吹气同时放开,小球上方的流线密,流速大,下方的流线疏,流速小,故小球不会落下,只会在漏斗中跳跃。
扩展资料:
1、伯努利原理在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。
2、伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体。
3、伯努利原理也可以应用在飞机上,飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。
参考资料:百度百科-伯努利原理
本回答被网友采纳1、列车(地铁)站台的安全线
在列车(地铁)站台上都划有黄色安全线。这是因为列车高速驶来时,靠近列车车厢的空气被带动而快速运动起来,压强就减小,站台上的旅客若离列车过近,旅客身体前后会出现明显的压强差,身体后面较大的压力将把旅客推向列车而受到伤害。
2、船吸现象
当两艘船平行着向前航行时,在两艘船中间的水比外侧的水流得快,中间水对两船内侧的压强,也就比外侧对两船外侧的压强要小。于是,在外侧水的压力作用下,两船渐渐靠近,最后相撞。
3、喷雾器
喷雾器是利用流速大、压强小的原理制成的。
让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,液体受到空气流的冲击,被喷成雾状。
4、刮风掀翻屋顶或压垮大桥
当刮风时,屋面上的空气流动得很快,等于风速,而屋面下的空气几乎是不流动的。根据“伯努利原理”,这时屋面下空气的压力大于屋面上的气压。
要是风越刮越大,则屋面上下的压力差也越来越大,一旦风速超过一定程度,这个压力差就“哗”的一下掀起屋顶。
5、香蕉球(弧线球)
罚“香蕉球”的时候,运动员并不是把脚踢中足球的中心,而是稍稍偏向一侧,同时用脚背摩擦足球,使球在空气中前进的同时还不断地旋转。
这时,一方面空气迎着球向后流动,另一方面,由于空气与球之间的摩擦,球周围的空气又会被带着一起旋转.这样,球一侧空气的流动速度加快,而另一侧空气的流动速度减慢。
当刮风时,屋面上的空气流动得很快,等于风速,而屋面下的空气几乎是不流动的。根据“伯努利原理”,这时屋面下空气的压力大于屋面上的气压。要是风越刮越大,则屋面上下的压力差也越来越大,一旦风速超过一定程度。
学会了“伯努利原理”,我们就会明白:为什么到水流湍急的江河里去游泳是一件很危险的事。有人计算了一下,当江心的水流以每秒1米的速度流动时,差不多会有30公斤的力在吸引、排挤着人的身体,就是水性很好的游泳能手,也望而生畏,不敢随便游近
伯努利原理可以应用到不同类型的流体流动,从而是可广泛套用的伯努利方程表示式。事实上,有不同类型的流的伯努利方程的不同形式的。伯努利原理的简单形式是有效的不可压缩流动(如最液体流动),也为移动可压缩流体(如气体)在低马赫数(通常小于0.3)。更先进的形式可被应用到在某些情况 下,在更高的马赫数(见伯努利方程的推导)可压缩流。
伯努利定律可以从能量守恒定律来推演。说明如下:在一个稳定的水流,沿着直线流向的所有点上,各种形式的流体机械能总和必定相同。也就是说,动能,势能,与内能的总和保持不变。换言之,任何的流体速度增加,即代表动态压力和单位体积动能的增加,而在同时会导致其静态压力,单位体积流体的势能、内能等三者总和的减少。如果液体流出水库,在各方向的流线上,各种形式的能量的总和是相同的。
在流体动力学,伯努利原理指出,无黏性的流体的速度增加时,流体的压力能或势能(势能)总和将减少。
伯努利从观察液体的行为中推导出伯努利方程,但他的方程是只能应用在不可压缩的流体,以及虽然可压缩但流速非常慢的流体(也许可以到1/3的声速)。利用基本物理原理,可以发展出类似的方程,以适用于可压缩的流体。以下有几个类似于伯努力定律,能应用在不同领域方程。
参考资料:百度百科-伯努利原理
本回答被网友采纳举例子说明伯努利方程在生活中的应用,求帮忙
由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体。1、飞机能够飞上天,因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的...
生活中有哪些是应用了伯努利原理?
二、锅铲、手勺、漏勺、铝锅等炊具的炳都是木头或塑料——木头、塑料是热的不良导体,以便在烹饪过程中不烫手。三、汽车急刹车(减速)时:1、司机踩刹车——力是改变物体运动状态的原因.2、乘客会向车行方向倾倒——惯性。3、司机用较小的力就能刹住车——杠杆原理。四、钢笔吸取墨水是利用大气压...
伯努利原理的应用
1. 空吸作用:伯努利原理能够解释为何在某些条件下,流体不会从小孔流出,反而会将外部空气吸入。例如,在一个水平管道中,当流速增加导致某处截面积的压强降低至低于大气压时,空气将被吸入以平衡压强。这一原理被广泛应用于喷雾器、水流抽气机和射流真空泵的设计中。2. 流量计:空族汾丘里流量计利用伯...
伯努利定律的例子有哪些?
为了气球继续上升,办法是减小气球的质量,具体方法是将气球下面携带的沙袋丢掉一些。将气球里的气体放掉一些,体积减小,平均密度增大,气球就下降。3、刮风 当刮风时,屋面上的空气流动得很快,等于风速,而屋面下的空气几乎是不流动的。根据伯努利原理,这时屋面下空气的压力大于屋面上的气压。要是风越刮...
伯努利原理生活应用
5、应用于环保空调 环保空调就是应用的这个原理,一面进风,一面进水,以此来保持室内温度。6、列车站设置的警戒线 列车进站的时候速度很快,车厢附近的空气被带着也会快起来,越靠近车厢的空气流速越快,越远的地方空气流速越慢。还是根据伯努利原理,靠近车厢的地方压力小,远离车厢的地方压力大,二者...
伯努利原理的应用举例
伯努利原理在多个领域中发挥着关键作用,下面是一些具体的应用实例:飞机飞行的奥秘:机翼的特殊设计使得上方气流密集,流速快,压强低;下方则相反,这种压强差提供了向上的升力,使飞机翱翔天际。 错喷雾器和汽油发动机化油器:它们利用流速与压强的关系,通过控制气流的流速变化,使液体以雾状形式喷出,保...
1.关于伯努利定律的举例?(生活中的例子) 2.按费力杠杆和省力杠杆分类...
1、喷雾器是利用流速大、压强小的原理制成的。汽油发动机的汽化器;飞机机翼,赛车流线型,球类比赛中的"旋转球,乒乓球的上旋球。2、费力杠杆:镊子,筷子,扫帚,钓鱼竿,缝纫机的脚踏板,人的前臂等;省力杠杆:撬棒,道钉翘,羊角锤,独轮车等 ...
伯努利方程有什么应用?在流体力学方面的
丹尼尔·伯努利在1726年提出了“伯努利原理”。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。应用⒈ 翼型升力 飞机为什么能够飞上天?因为机翼受到向上的升力。飞机...
伯努利原理生活应用
伯努利原理在生活中有多种实用的应用。首先,我们可以通过在漏斗口吹气,利用流速与压力的关系,使小球在流线密集的上方保持平衡,实现小球在漏斗中的跳跃(在考织京班五漏斗宽大处放一小球,流速差异导致小球不会落下,而是在漏斗中跳剂城研扬车迫聚八类鲁跃。)。压气机的设计也运用了这一原理,通过...
生活中伯努利原理的现象
伯努利方程是理想流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。这个理论是由瑞士数学家丹尼尔第一·伯努利在1738年提出的,当时被称为伯努利原理。后人又将重力场中欧拉方程在定常流动时沿流线的积分称为伯努利积分,将重力场中无粘性...