已知数列{an}满足:1?a1+2?a2+3?a3+…n?an=n(1)求{an}的通项公式;(2)若bn=2nan,求{bn}的前n项和Sn.
已知数列{an}满足:1?a1+2?a2+3?a3+…n?an=n(1)求{an}的通项公式;(2...
(1)∵数列{an}满足:1?a1+2?a2+3?a3+…n?an=n,∴当n≥2时,nan=ni=1i?ai-n?1ii?ai=1,∴an=1n,当n=1时,a1=1成立,∴an=1n.(2)∵bn=n?2n,∴Sn=1?21+2?22+3?23…+n?2n①2Sn=1?22+2?23+3?24…+(n?1)?2n+n?2n+1②由①-②得,?Sn=21+22+23...
...1*a1+2*a2+3*a3+……+n*an=n (1)求{an}通项公式 (2)若Bn=(2^n)\/...
∴1*a1+2*a2+3*a3+……+(n-1)*an-1=n-1,两式相减,得n*an=1,∴an=1\/n。(2)Bn=(2^n)\/(1\/n)=n*2^n,Sn=1×2+2×2²+3×2³+……+n·2^n ①,①×2得2Sn=1×2²+2×2³+3×2^4+……+n·2^(n+1) ② ①-②得-Sn=2+2²+...
...+A3+...+AN\/N;(1)若BN=n+2,求数列{an}的通项公式;
2).设bn=n*an\/3,求数列{bn}的前n项和Bn 解:1)、 当n=1时,S1=a1 ,得 a1=(1\/2)(3n+a1) ,得 a1=3 ;由 an=(1\/2)(3n+Sn) 可得 Sn=2an-3n (1)于是 S(n-1)=2a(n-1)-3(n-1)=2a(n-1)-3n+3 (2)(1)-(2) 得 Sn-S(n-1)=2an-3n-[2a(n-1)-3n+3 ...
已知数列{an}满足a1=1,an=a1+2a2+3a3...+(n-1)an-1 (n>=2),则{an}...
a(n+1)=(n+1)*an 利用累积法:当n=1时,a2=2*a1 当n=2时,a3=3*an 当n=3时,a4=4*a3 --- 当n-1时,an=n*a(n-1)相乘:a2*a3*a4* --- * a(n-1)*an=( 2*a1)*(3*a2)*(4*a3)* --- *(n*a(n-1))an= 2*3*4* --- *n *a1=1*2*3*--- *n= n!
已知数列{an}满足a1+a2+a3+…+nan=n(n+1)(n+2),则{an}的通项公式为an=...
n(an+xn²+yn+z)=(n-1)(a(n-1)+x(n-1)²+y(n-1)+z)nan+xn³+yn²+zn=(n-1)a(n-1)+x(n³-3n²+3n+1)+y(n²-2n+1)+zn-z nan=(n-1)a(n-1)+(-y-3x+y)n²+(-z+3x-2y+z)n+(x+y-z)-3x=3,x=-1,3x-2y...
已知数列{an}中,a1=1,a1+2a2+3a3+……+nan=(n+1)\/2*an+1 求数列{an}...
其实是这样的:这题答案是 a(1)=a(2)=1,a(n)=2\/n*3^(n-2)我简要地说一下 对于题目的等式,变量分别取n和n-1得两个式子,相减化简得到a(n)\/a(n-1)=(n-2)\/(n-1).注意到a(1)=a(2)=1,a(3)=2,a(3)\/a(2)是满足此条件的起始项,然后累乘就得到想要的答案,注意项数 ...
...an?an+1an+1=n,n∈N*(1)求数列{an}的通项公式;(2)设bn=2nan,数列{...
(1)解:由an?an+1an+1=n,得(n+1)an+1=nan,即an+1an=nn+1,∴a2a1?a3a2?a4a3…an?1an?2?anan?1=12×23×34×…×n?2n?1×n?1n,即an=1na1,∵a1=1,an=1n;(2)解:∵an=1n,∴bn=2nan=n?2n,∴Tn=1×2+2×22+3×22+…+n?2n ①2Tn=1×22+...
已知数列{an}满足a1=1,an=a1+2a2+3a3+…(n-1)an-1(n>=2)则{an}的通...
解当n=2时a2=(2-1)a1=1 当(n>=3)时 由an=a1+2a2+3a3+…(n-1)an-1...① 则a(n+1)=a1+2a2+3a3+…(n-1)an-1+nan ...② 两式相减②-① 得a(n+1)-an=nan (n>=3)即a(n+1)=(n+1)an 即 a4=3a3 a5=4a4 ...a(n-1)=(n-1)a(n-2)an=na...
...且a1=1(1)求a2,a3,a4的值;(2)求{an}的通项公式;(3)令bn=
(1)∵an+1-an=n+2(n∈N*)且a1=1,∴a2=4,a3=8,a4=13;(2)∵an+1-an=n+2∴a2-a1=1+2a3-a2=2+2…an-an-1=(n-1)+2以上n-1个式子相加可得,an-a1=1+2+…+(n-1)+2n-2=n2+3n?22;(3)bn=4an-68n=2(n2+3n-2)-68n=2(n-312)2-9532,∴n=15...
已知数列{an}满足a1=1,a2=2,an+2 +2an=3an+1(1令bn=an+1-- an,证明...
an+1-an)即bn+1=2bn ∴{bn}(即{an+1-an})是以2为公比的等比数列 又b1=a2-a1=2 ∴bn的首项为2,∴bn=2^n ∴an-an-1=2^(n-1)an-1-an-2=2^(n-2)……a2-a1=2 以上n-1个式子相加 得an-a1=2+2^2+2^3+……2^(n-1)=2[2^(n-1)-1]∴an=2^n-1 ...