有关数学的小知识

如题所述

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

一、重视课内听讲,课后及时进行复习.

新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.

二、多做习题,养成解决问题的好习惯.

如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.

三、调整心态并正确对待考试.

首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-11-24
数学符号的起源

数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。

例如加号曾经有好几种,现在通用"+"号。

"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。

"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。

到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。

乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。

到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。

"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。

十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。

1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。

大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。

数学的起源和早期发展:
数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.
古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识.本回答被网友采纳
第2个回答  2011-02-13
数学小常识
1.悖论:
(1)罗素悖论
一天,萨维尔村理发师挂出了一块招牌:村里所有不自己理发的男人都由我给他们理发。于是有人问他:“您的头发谁给理呢?”理发师顿时哑口无言。
1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础。到十九世纪末,全部数学几乎都建立在集合论的基础上了。就在这时,集合论接连出现了一系列自相矛盾的结果。特别是1902年罗素提出理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大批新成果,也带来了数学观念的革命。

(2)说谎者悖论:

“我正在说的这句话是慌话。”公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰着数学家和逻辑学家。这就是著名的说慌者悖论。类似的悖论最早是在公元前六世纪出现的,当时克里特岛哲学家爱皮梅尼特曾说过:“所有的克里特岛人都说慌。”在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。
说慌者悖论有多种变化形式,例如,在同一张纸上写出下列两句话:
下一句话是慌话。
上一句话是真话。
更有趣的是下面的对话。甲对乙说:“你下面要讲的是‘不’,对不对?请用‘是’或‘不’来回答!”
还有一个例子。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?”
2.阿拉伯数字
在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

现在,阿拉伯数字已成了全世界通用的数字符号。
第3个回答  2011-02-12
数学符号的起源

数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。

例如加号曾经有好几种,现在通用"+"号。

"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。

"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。

到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。

乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。

到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。

"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。

十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。

1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。

大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。

数学的起源和早期发展:
数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.
古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识.
第4个回答  2011-02-14
这是一个有趣的数学常识,做数学报用上它也很不错。

人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:

12345679*9=111111111

12345679*18=222222222

12345679*27=333333333

……

12345679*81=999999999

这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是:

12345679*99=1222222221

12345679*108=1333333332

12345679*117=1444444443

… …

12345679*171=2111111109

也是“清一色

生活中的数学知识有哪些呢?
生活中的数学知识例子有如下:1、桌子问题:一张方桌,砍掉一个角还剩下几个角。2、切豆腐问题: 一块豆腐切三刀,最多能切成几块。3、切西瓜问题:一个西瓜用三刀切七份,吃完剩下八块皮,如何做到。4、竹竿问题:5米长的竹竿能不能通过一米高的门。5、纸盒问题:边长一米的方盒子能不能容...

有趣的数学知识有哪些?
有趣的数学知识有如下:1、没有最大的质数。欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3...

日常生活中的数学常识,你知道哪些?
2、猫的面积:冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。在数学中,体积一定,表面积最小的物体是球体。猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。运用到了数学的面积学。3、四叶草叫“幸运草 ”:三叶草,...

数学小知识一问一答
- 欧拉定理:定点数+面数=棱数+2,也称欧拉定理。- 欧拉定理推论:可能只有5种正多面体。- 克莱因瓶:左手系物体可变成右手系。2. 小学数学知识集锦 - 笔算法则:- 两位数加法:相同数位对齐,从个位加起,个位满10向十位进1。- 两位数减法:相同数位对齐,从个位减起,个位不够减从十位退1,...

生活中数学知识有哪些
生活中数学知识有很多,主要包括以下几个方面:1.几何图形在日常生活中的应用 在生活中,我们经常接触到各种各样的几何形状。比如,房屋的门窗可以看作是长方形或正方形,车轮是圆形,道路上的斑马线是平行线等等。理解这些基本几何概念有助于我们更好地理解和计算日常生活中的事物。例如,通过计算房间的...

数学常识有哪些
数学常识 一、数学基本概念和原理 数学是研究数量、结构、空间、变化等概念的抽象科学。它包含了许多基本概念和原理,如数、形、代数、几何、概率与统计等。其中,数的概念是数学的基础,包括整数、有理数、实数等。几何则研究形状、大小和空间结构。代数则是研究数的运算和方程式等抽象概念。概率与统计则...

生活中的数学知识有哪些?
1、风扇的扇叶绕着中心旋转:过一点有无数条直线。2、三角形的支架:三角形具有稳定性。3、四边形的推拉门:四边形具有不稳定性。4、速度、时间、路程三者的函数关系。5、用坐标表示地理位置。6、买彩票是否能中奖,概率问题。7、风筝飞翔平稳是轴对称图形的性质的应用。

有趣的数学知识有哪些?
有趣的数学知识有如下:1、假如“一拃”的长度为8厘米,量一下课桌的长为7拃,则可知课桌长为56厘米。如果每步长65厘米,上学时,数一数走了多少步,就能算出从家到学校有多远。2、身高也是一把尺子。如果身高是150厘米,那么抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。因为...

小学的数学知识点总结归纳
1、数与代数:数的认识、数的运算、式与方程、比和比例。2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用...

有哪些重要的数学基础知识?
数学是一门基础学科,它涉及到许多重要的基础知识。以下是一些重要的数学基础知识:1. 数论:数论是研究整数性质的一门学科,它包括素数、因数分解、同余等概念。2. 代数:代数是研究未知数的一门学科,它包括方程、不等式、函数等概念。3. 几何:几何是研究形状和空间关系的一门学科,它包括点、线、...

相似回答