%学习率
xite=0.1;
alfa=0.01;
loopNumber=10;
I=zeros(1,midnum);
Iout=zeros(1,midnum);
FI=zeros(1,midnum);
dw1=zeros(innum,midnum);
db1=zeros(1,midnum);
这段语句是什么意思?求解释
希望解答详细一点
p=1:2:100在BP神经网络中什么意思
这是matlab中的特定用法,指的是:p是一个以2为公差的等差数列形成的数组,其数值为[1,3,5,7,…,99],是一个1x50的矩阵。如果这条语句出现在神经网络程序中,一般是指输入样本p为该矩阵,为单输入网络,样本总共有100列。
bp代表什么呀
BP神经网络 BP (Back Propagation)神经网络是一种神经网络学习算法,全称基于误差反向传播算法的人工神经网络。 如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元...
什么是BP神经网络?
一般来说,神经网络算法的第一步是学习。在这个过程中,神经网络需要不断 突触的数值,以便改进算法表现,更好地完成分配给它的任务。人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成;具有大规模并行处理、分布式信息存储、良...
BP神经网络
由于神经网络允许多个隐含层,即各层的神经元都会产出预测,因此,就不能直接利用传统回归问题的梯度下降法来最小化 !$J(\\theta)$ ,而需要逐层考虑预测误差,并且逐层优化。为此,在多层神经网络中,使用反向传播算法(Backpropagation Algorithm)来优化预测,首先定义各层的预测误差为向量 !$ δ^{(...
BP神经网络生成的页面 里面什么意思呀
net3=newff(p,t,[7],{'tansig'},'trainbfg');对数据进行了分类,其中随即抽取15%作为校验,默认6次成功还是失败就会停止。解决这个问题的方法是,初始化神经网络以后,加上一句 net.divideFcn = '';这样所有的样本都用于训练。就和以前的方法效果一致了。用以前的方法会出现一些问题,比如报警之类...
BP神经网络的梳理
BP神经网络被称为“深度学习之旅的开端”,是神经网络的入门算法。各种高大上的神经网络都是基于BP网络出发的,最基础的原理都是由BP网络而来 [1] ,另外由于BP神经网络结构简单,算法经典, 是神经网络中应用最广泛的一种。BP神经网络(back propagation neural network)全称是反向传播神经网络。神经...
BP神经网络中net.iw{1,1} 两个1分别代表什么意思??
第一个1是指网络层数(net.numLayers);第二个1是指网络输入个数(net.numInputs);从第j个输入到到第i层的权重的权重矩阵(或null matrix [])位于net.iw {i,j};神经网络对象IW属性:该属性定义了网络输入和各输入层神经元之间的网络权值,属性值为NxNi维的单元数组,其中,N为网络的层数...
深入浅出BP神经网络算法的原理
BP神经网络是怎样的一种定义?看这句话:一种按“误差逆传播算法训练”的多层前馈网络。BP的思想就是:利用输出后的误差来估计输出层前一层的误差,再用这层误差来估计更前一层误差,如此获取所有各层误差估计。这里的误差估计可以理解为某种偏导数,我们就是根据这种偏导数来调整各层的连接权值,再用...
神经网络bp算法可以对样本进行预测,具体是预测什么?
归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布;当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习...
神经网络,BP算法的理解与推导
神经网络的基本概念与BP算法 在理解神经网络与BP算法之前,首先需要明确神经网络的基本概念,并对BP算法有初步了解。BP算法全称为反向传播算法,是一种用于训练多层神经网络的常见方法。它通过计算网络输出与期望输出之间的误差,然后反向传播这个误差,对网络的权重进行调整,以减少这个误差。神经网络的数学描述...