高中数学排列组合问题。

0,1,2,3,4,5。①能组成多少无重复数字四位奇数。②能组成多少无重复且能被5整除的四位数。 请详细解答,及式子的含义。

①从1,3,5取一个排在个位有A3(1)最高位不为0,有A4(1)其余两位有A4(2)所以四位奇数有A3(1)*A4(1)*A4(2)=144②个位为0或5个位为0时有A5(3)=60,个位为5时,有A4(1)*A4(2)=48
能被5整除的四位数有144+48=192
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-07-01
1. 末位和首位 末位三种 ,首位4种 一共是3*4*4*3*=144
二、 分两类。末5,1*4*4*3=48 末0,1*5*4*3=60 N=48+60=108

高中数学,排列组合。要解释。有好评
【解析】(1)选出一个盒子不放球,有4种选择,4个球中有2个放入同一盒中,C(4,2)种 分成3组后,放入3个盒中,有A(3,3)种 所以,共有4×C(4,2)×A(3,3)=144(种)(2)同(1),144种 (3)4个球分成2组 ①1+3,有4种分法 ②2+2,有3种分法 所以,共有4+...

如何解决高中数学的排列组合问题?
1、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。2、相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。3、定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,...

高中数学排列组合问题
高中数学排列组合问题中插队问题详解,具体实例分析如下:首先,我们面对的是7名师生站成一排照相留念的情况。其中包含老师一人,男生四人,女生两人。四名男生身高不等,要求从高到低站队。站队问题分为几种情况讨论:第一种情况,四名男生站好后,空出5个位置供其他三人站。选择3人站这3个位置的方法有...

如何求解高中数学题目中的排列组合问题?
解:由于只取3个字母进行排列,因此n=4,m=3,代入公式可得:P(4,3)=4!\/(4-3)!=4×3×2=24 所以,从A、B、C、D四个字母中取出3个字母进行排列,共有24种排列方法。2. 组合 组合是从n个不同元素中取出m(m≤n)个不同元素的所有组合方式的数目,通常用C(n,m)表示。公式:C(n,m)...

如何计算高中数学的排列组合问题
高中数学的排列组合问题是数学中的基础题目,通常出现在组合数学或概率论部分。解决这类问题的关键是理解排列和组合的定义,以及熟练掌握相关的公式。以下是一些解决排列组合问题的基本步骤:1. **确定问题类型**:- 如果问题涉及到元素的顺序,那么通常是排列问题。- 如果问题不关心元素的顺序,那么通常是...

高中数学排列组合常用解题方法
4、按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。5、处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练...

高中数学排列组合公式有哪些?
高中数学排列组合公式如下:排列A(n,m)=n×(n-1)。(n-m+1)=n!\/(n-m)!(n为下标,m为上标,以下同)。组合C(n,m)=P(n,m)\/P(m,m)=n!\/m!(n-m)!。例如A(4,2)=4!\/2!=4*3=12。C(4,2)=4!\/(2!*2!)=4*3\/(2*1)=6。加法原理与分布计数法:1、加法原理:做一...

高中数学排列组合常用解题方法
3、定序问题,采用缩倍法;4、标号排位问题,采用分步法;5、有序分配问题,采用逐分法;6、多元问题,采用分类法;7、交叉问题,采用集合法;8、定位问题,采用优先法;9、多排问题,采用单排法;10、至少问题,采用间接法;11.选排问题,采用先取后排法;12.复杂排列组合问题,采用构造模型法。

如何计算高中数学中的排列组合
高中数学中的排列组合是组合数学的一个分支,它涉及的对象是无序的集合。在解决排列组合问题时,通常需要根据问题的具体情况选择合适的计数原理——排列(Permutation)或组合(Combination)。以下是排列和组合的基本概念:1. **排列(Permutation)**:排列是指从n个不同元素中取出m(m≤n)个元素,按照...

高中数学排列组合 求解
先考虑3个一组的可能性 3种不同颜色的球 红黄绿 1种,剩下的3个颜色的球一样一个 所以排列的方法有 1×4×3×2×1=24种 2种不同颜色的球 2红1黄;2红1绿;2黄1红;2黄1绿;2绿1红;2绿1黄 共6种,剩下的3个球中 2个同色,一个异色 所以排列的方法有 6×4×3×2×1÷2=...

相似回答
大家正在搜