设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点

1求f(x)的极值点
2若f(x)为R上单调函数,求a的取值范围

(Ⅰ)首先对f(x)求导,将a= 代入,令f′(x)=0,解出后判断根的两侧导函数的符号即可.
(Ⅱ)因为a>0,所以f(x)为R上为增函数,f′(x)≥0在R上恒成立,转化为二次函数恒成立问题,只要△≤0即可.解答:解:对f(x)求导得
f′(x)=
(Ⅰ)当a= 时,若f′(x)=0,则4x2-8x+3=0,解得

结合①,可知

所以, 是极小值点, 是极大值点.
(Ⅱ)若f(x)为R上的单调函数,则f′(x)在R上不变号,
结合①与条件a>0知ax2-2ax+1≥0在R上恒成立,
因此△=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-07-11
看看题目有没有写错,我看得不太明白。这个是一个整体不 x/1?
第2个回答  2011-07-06
f(x)=e^x/1+ax^2 (?)是不是题目写错了?

设f(x)=e^x\/1+ax^2,其中a为正实数(1)当a=4\/3时,求f(x)的极值点 2,若f...
【分析】(1)求导数,确定函数的单调性,即可求得函数的极值点;(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,由此可得结论.【解答】【点评】本题考查导数知识的运用,考查函数的单调性与极值,考查解不等式,属于中档题.

设f(x)=e^x\/1+ax^2,其中a为正实数(1)当a=4\/3时,求f(x)的极值点
解f'(x)=0 即解e^x * (1+ax^2-2ax)=0 即1+ax^2-2ax=0 a=4\/3代入得x=3或x=1\/4

...f(x)=e^x\/(1+ax^2),其中a为正实数 1.当a=4\/3时,求f(x)的极值点
解:(1)求导函数可得f′(x)= 1+ax2-ax(1+ax2)2•ex① 当a=43时,令f′(x)=0,可得4x2-8x+3=0,解得x=32或x=12 令f′(x)>0,可得x<12或x>32;令f′(x)<0,可得12<x<32 ∴函数的单调递增区间为(-∞,12),(32,+∞);单调递减区间为(12,32)...

设f(x)=(e^x)\/(1+ax^2),其中a为正实数(1)当a=4\/3时,求f(x)的极值点
所以, 是极小值点, 是极大值点.(Ⅱ)若f(x)为R上的单调函数,则f′(x)在R上不变号,结合①与条件a>0知ax2-2ax+1≥0在R上恒成立,因此△=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.

...\/1+ax2,其中a为实数 (1)当a=4\/3时,求f(x)的极值点
x}\/{1+(4\/3)x^2}^2 因为求极值点,则x=0.5或1.5 0,解得x=0.5或1.5 所以极值点为x=0.5或1.5 (2)f'(x)=e^x(ax^2-2ax+1)\/(1+ax^2)^2 因为是单调函数,所以只要使ax^2-2ax+1恒大于0或是恒小于0 当a=0时,满足条件 当a>0时,最小值4ac-b^2\/4a>0,得0 ...

设fx=e^x\/(1+ax^2),a为正实数 1,当a=4\/3,求fx的极值点 2若fx为r上的...
要求f(x)的极值点就是对原函数求导 即 f(x)’=【e^x(4\/3x^2-8\/3x+1)】\/(1+4\/3x^2)^2 令f(x)'=0 即4\/3x^2-8\/3x+1=1\/3(2x-3)(2x-1)=0 得到极值点x1=3\/2 x2=1\/2 2,f(x)’=【e^x(ax^2-2ax+1)】\/(1+ax^2)^2 ∵e^x>0 (1+ax^...

...\/1+ax2,其中a为实数 (1)当a=4\/3时,求f(x)的极值点
解得x=0.5或1.5 所以极值点为x=0.5或1.5 (2)f'(x)=e^x(ax^2-2ax+1)\/(1+ax^2)^2 因为是单调函数,所以只要使ax^2-2ax+1恒大于0或是恒小于0 当a=0时,满足条件 当a>0时,最小值4ac-b^2\/4a>0,得0<a<1 当a<0时,最大值4ac-b^2\/4a<0,不存在 所以0<=a<1 ...

设f(x)=e^x\/(1+ax),其中a为正实数(1)当a=4\/3时,求f(x)的极值点 1...
第二步,同样,求导,可得f(x)=e^x(ax+1-a)\/(1+ax)^2. 因为e^x和(1+ax)^2恒大于0.要让f(x)在R上单调,只需ax+1-a恒大于0或小于0就好。当a等于0时,明显符合;当a不等于0时,ax+1-a是一个一次函数,不可能恒大于0或小于0.所以a=0。(这里求出来和题目要求不一样,你有没...

急急急!f(x)=ex\/1+ax2,其中a为正实数.1若f(x)为R上的单调递增函数,求a...
5或1.5 所以极值点为x=0.5或1.5 (2)f'(x)=e^x(ax^2-2ax+1)\/(1+ax^2)^2 因为是单调函数,所以只要使ax^2-2ax+ 1恒大于0或是恒小于0 当a=0时,满足条件 当a>0时,最小值4ac-b^2\/4a>=0,得0<a<=1 当a<0时,最大值4ac-b^2\/4a<=0,不存在 所以0<=a<=1 ...

...e的x次方\/(1+a乘以x的平方),其中a为正实数,求fx单调区间
f(x)=e^x\/(1+ax^2)f'(x)=[e^x(1+ax^2)-2axe^x]\/(1+ax^2)^2=e^x(ax^2-2ax+1)\/(1+ax^2)^2=ae^x[(x-1)^2+1\/a-1]\/(1+ax^2)^2 讨论a:若0<a<=1, 则f'(x)>=0恒成立,f(x)在R上单调增;若a>1, 则由f'(x)=0得:x1=1+√(1-1\/a), x2=1-...

相似回答
大家正在搜