1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+100这道数学题怎么做,尽量...
化减:2\/1*2+2\/2*3+2\/3*4+…然后列项:(2\/1-2\/2)+(2\/2-2\/3)…然后化简:2\/1-2\/101=200\/101 如果取极限得2
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+.………+1\/1+2+3+.……+10的简便运算
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+.………+1\/1+2+3+.……+10的简便运算 原式 =1+1\/3+1\/6+1\/10+1\/15+1\/21+1\/28+1\/36+1\/45+1\/55 =2×(1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90+1\/110) =2×(1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1...
奥数题1+1\/1+2+1\/1+2+3+1\/1+2+3+4+……+1\/1+2+3+4+5+……100
推导过程:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3……+n)= 1+1\/[(1+2)×2÷2]+1\/[(1+3)×3÷2]+……+1\/[(1+n)×n÷2]——① = 2\/2+2\/(1+2)×2+2\/(1+3)×3+……+2\/(1+n)×n——② = 2×[1\/2+1\/2-1\/3+1\/3-1\/4+……+1...
数学题:1\/1+2+1\/1+2+3+1\/1+2+3+4...+1\/1+2+3+...+2001
所以原式有:1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...+1\/(1+2+3+...+2001)=1\/[(1+2)*2\/2]+1\/[(1+3)*3\/2]+1\/[(1+4)*4\/2]+……+1\/[(1+2001)*2001\/2]=2\/(2*3)+2\/(3*4)+2\/4*5+……+2\/(2002*2001)=[1\/2*3+1\/3*4+1\/4*5+...+...
数学问题 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+L+100)的...
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 性质 若已知一个...
1\/1 + 1\/1+1 +1\/1+2+3 +1\/1+2+3+4 +……+1\/1+2+3+4+……+11=? 注:1...
第二步:相消,减少项数 =2 第三步:直接计算 你可以试试下面这题,还是裂项求和:1\/(√2+√1)+1\/(√3+√2)+1\/(√4+√3)+……﹢1\/(√12+√11)=? 注:〝√〞是根号
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+1\/1+2+3+4+5+...+1\/!+2+3+...+100=?_百 ...
1\/1+2+3+...+n=2\/n(n+1)=(2\/n)-(2\/n+1)所以1+ 1\/1 +2+ 1\/1 +2+3+ 1\/1 +2+3+4+ 1\/1 +2+3+4+5+...+ 1\/1 +2+3+...+100=1+(2\/2-2\/3)+(2\/3-2\/4)+(2\/4-2\/5)+...+(2\/100-2\/101)=1+1-2\/101=200\/101 ...
1+1\/1+2+1\/1+2+3+...+1\/1+2+3+4+...+99+100
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...1\/1+2+3+...+100 =1+1\/[(1+2)×2÷2]+1\/[(1+3)×3÷2]+1\/[(1+4)×4÷2]+...1\/[(1+100)×100÷2]=1+2\/(1+2)×2+2\/(1+3)×3+2\/(1+4)×4+...2\/(1+100)×100 =1+2×(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5...
1+1\/1+2+1\/1+2+3+...+1\/1+2+3+...+99 等于多少 请写出详细的过程与算...
1+2+3+...+99 +。。。+n=n(n+1)\/2 所以 1+1\/1+2+1\/1+2+3+...+1\/1+2+3+...+99 =2\/(1*2)+2\/(2*3)+...+2\/(99*100)=2(1-1\/2+1\/2-1\/3+...+1\/99-1\/100)=2*99\/100 =99\/50
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+…+1\/(1+2+3+…+100) 简便计算方法...
1+2+3+...+n=n(n+1)\/21\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 它的原理是根据公式:1\/...