什么是特征值

如题所述

特征值是指设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

特征值是线性代数中的一个重要概念,在数学、物理学、化学、计算机等领域有着广泛的应用。

应用

量子力学:设A是向量空间的一个线性变换,如果空间中某一非零向量通过A变换后所得到的向量和X仅差一个常数因子,即AX=kX ,则称k为A的特征值,X称为A的属于特征值k的特征向量或特征矢量(eigenvector)。如在求解薛定谔波动方程时,在波函数满足单值、有限、连续性和归一化条件下,势场中运动粒子的总能量(正)所必须取的特定值,这些值就是正的本征值。

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-07-29
一个向量(或函数)被矩阵相乘,表示对这个向量做了一个线性变换。如果变换后还是这个向量本身乘以一个常数,这个常数就叫特征值。这是特征值的数学涵义;
至于特征值的物理涵义,根据具体情况有不同的解释。比如动力学中的频率,稳定分析中的极限荷载,甚至应力分析中的主应力。
第2个回答  2019-06-01
这是高等数学中的一个名字,百科对此的解释如下:
设M是n阶方阵,
I是单位矩阵,
如果存在一个数λ使得
M-λI
是奇异矩阵(即不可逆矩阵,
亦即行列式为零),
那么λ称为M的特征值。
其他详细解释看百科:
http://baike.baidu.com/view/689250.html?wtp=tt
第3个回答  2021-09-06

矩阵特征值是线性代数重要内容。

第4个回答  2019-05-05
1.定义:若矩阵A乘上某个非零向量α等于一个实数λ乘上该向量,即Aα=λα,则称λ为该矩阵的特征值,α为属于特征值λ的一个特征向量。
2.求矩阵A的特征值及特征向量的步骤:
(1)写出行列式|λE-A|;
(2)|λE-A|求=0的全部根,它们就是A的全部特征值,其中E为单位矩阵;
(3)对于矩阵A的每一个特征值λ,求出齐次线性方程组(λE-A)X=0的一个基础解系,则可以得到属于特征值λ的特征向量。
3.特征值的作用和意义体现在用矩阵进行列向量的高次变换也就是矩阵的高次方乘以列向量的计算中。数学中的很多变换可以用矩阵的乘法来表示,在这样的变换中,一个列向量(点)α变成另一个列向量(点)β的过程可以看成是一个矩阵A乘以α得到β,即Aα=β,如果把同样的变换连续的重复的做n次则需要用矩阵高次方来计算:A^n·α,如果没有特征值和特征向量,此处就要计算矩阵A的n次方,这个运算量随着n的增加,变得越来越大,很不方便。而利用特征值和特征向量,可以达到简化计算的目的:设A特征值分别为λ1,λ2,------λk,对应的特征向量分别为α1,α2,------αk,且α可以分解为α=x1·α1+x2·α2+---+xk·αk,
则A^n·α=A^n·(x1·α1+x2·α2+---+xk·αk)
=A^n·x1·α1+A^n·x2·α2+---+A^n·xk·αk
=x1A^n·α1+x2A^n·α2+---+xkA^n·αk
=x1(λ1)^n·α1+x2(λ2)^n·α2+---+xk(λk)^n·αk.
这样就将矩阵的n次方的运算变成了特征值的n次方的运算。

什么是特征值
特征值是一种数学术语,主要用于描述矩阵或线性变换的重要属性。以下是关于特征值的 一、特征值的定义 特征值是指线性代数中,对于一个给定的方阵或线性变换,使其发生特定变换的标量值。具体来说,如果λ是一个标量,而A是一个方阵,存在一个非零向量v,使得Av = λv,那么λ就是矩阵A的一个特征...

什么叫特征值
特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

特征值是什么?
特征值是线性代数中一个重要的概念,它用来描述矩阵的性质和变换的特点。通俗来说,特征值是一个矩阵在某个方向上的“重要程度”。详细解释:可以将一个矩阵想象成一个变换器,它可以对向量进行变换。而特征值就是这个变换器的“放大倍数”。举个例子,假设有一个矩阵A,它表示一个线性变换。当对一个...

什么是特征值,有什么用处?
特征值是指设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。特征值是线性代数中的一个重要概念,在数学、...

特征值是什么意思
特征值是一种数学术语,尤其在矩阵理论中占有重要地位。特征值是线性代数中的一个重要概念,它表示了矩阵变换的某种特定性质。具体来说,对于一个给定的线性空间中的向量,当该矩阵作用于该向量时,矩阵的特征向量与该向量之间的伸缩比例因子就是特征值。换句话说,特征值和特征向量描述了矩阵对向量进行...

特征值是什么?
特征值是矩阵A满足方程Av=λv的数λ,其中v是非零向量,称为对应于特征值λ的特征向量。特征向量表示在矩阵作用下只发生伸缩变化而不改变方向的向量。2.求解特征值的步骤:首先,设矩阵A是一个n阶方阵。为了求解特征值,需要解特征方程det(A-λI)=0,其中I是单位矩阵,det表示行列式。解特征方程...

特征值是什么
特征值是线性代数中的一个重要概念。它是指对于一个特定的线性变换或者矩阵,使得变换或者矩阵与该向量的乘积变成一个数量乘以该向量,该数量就是特征值。更具体地说,如果存在一个非零向量x和标量λ,使得线性方程Ax = λx成立,那么λ就是矩阵A的一个特征值。向量x是对应于特征值λ的特征向量。特征...

特征值是什么
特征值是指设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。线性代数是数学的一个分支,它的研究对象是...

特征值是什么意思
特征值是什么意思介绍如下:实特征值就是特征方程求出来的特征值是实数,而不是虚数,特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值或本征值。如将特征值的取值扩展到...

特征值的概念是什么??
“正特征”值即为“正惯性指数”,同理“负特征”值即为“负惯性指数”。特征值简介:特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维 列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value...

相似回答