高中的导数公式是什么样的?

如题所述

高中数学求导公式表如下:

折叠基本函数推导过程:

这里将列举几个基本的函数的导数以及它们的推导过程:

⒈y=c(c为常数) y'=0

⒉y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

⒋y=logax(a为底数,x为真数) y'=1/x*lna

y=lnx y'=1/x

⒌y=sinx y'=cosx

⒍y=cosx y'=-sinx

⒎y=tanx  y'=1/(cosx)^2

⒏y=cotx y'=-1/sin^2x

⒐y=arcsinx y'=1/√(1-x^2)

⒑y=arccosx y'=-1/√(1-x^2)

⒒y=arctanx y'=1/(1+x^2)

⒓y=arccotx y'=-1/(1+x^2)

⒔y=u^v ==> y'=v' * u^v * lnu + u' * u^(v-1) * v

引用的常用公式:

在推导的过程中有这几个常见的公式需要用到:

⒈y=f[g(x)],y'=f'[g(x)]·g'(x)【f'{g(x)}中g(x)看作整个变量,而g'(x)中把x看作变量】

⒉y=u/v,y'=(u'v-uv')/v^2

⒊y=f(x)的反函数是x=g(y),则有y'=1/x'

导数的起源:

(一)早期导数概念----特殊的形式大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们现在所说的导数f'(A)。

(二)17世纪——广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。

牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。

(三)19世纪导数——逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示:

{dy/dx)=lim(oy/ox)。1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。

19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达,导数的定义也就获得了今天常见的形式。

(四)实无限将异军突起,微积分第二轮初等化或成为可能 微积分学理论基础,大体可以分为两个部分。一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限,指一种意识形态上的过程,比如无限接近。

温馨提示:内容为网友见解,仅供参考
无其他回答

高中导数公式及运算法则
导数公式:y=c(c为常数)y'=0、y=x^n y'=nx^(n-1) ;运算法则:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'。1、y=c(c为常数) y'=0 2、y=x^n y'=nx^(n-1)3、 y=a x y=a xlna y=е ^х у’=e^x 4、y=logax y'=logae\/x y=lnx y'=1\/x 5、y=sinx y'...

高中导数公式及运算法则
高中求导公式运算法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。2、两个函数的乘积的导函数:一导乘二+一乘二导。3、两个函数的商的导函数也是一个分式:除以母平方。4...

高中数学求导公式
导数: y'=1\/cos^2x 4、原函数:y=cotx 导数:y'=-1\/sin^2x 5、原函数:y=sinx 导数:y'=cosx 6、原函数:y=cosx 导数: y'=-sinx 7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x 9、原函数:y=logax 导数:y'=logae\/x 10、原函数:y=lnx 导数:y'=1\/x...

高中导数运算法则是什么?
高中导数四则运算法则是:1、减法法则:(f(x)-g(x))'=f'(x)-g'(x)。2、加法法则:(f(x)+g(x))'=f'(x)+g'(x)。3、乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。4、除法法则:(g(x)\/f(x))'=(g'(x)f(x)-f'(x)g(x))\/(f(x))^2。学好导数的方...

高中导数的基本公式
② (x^n)'= nx^(n-1) (n∈Q*);熟记1\/X的导数 ③ (sinx)' = cosx (cosx)' = - sinx (tanx)'=1\/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1\/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1\/(1-x^2)^1\/2 (arccosx...

高中求导公式
高中导数公式有:1、f'(x)=lim(h->0)[(f(x+h)-f(x))\/h]。即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式。2、f(x)=a的导数, f'(x)=0, ...

高中数学导数公式
高中数学导数公式有:1、y=c(c为常数) y'=0 2、y=x^n y'=nx^(n-1)3、y=a^x y'=a^xlna y=e^x y'=e^x 4、y=logax y'=logae\/x y=lnx y'=1\/x 5、y=sinx y'=cosx 6、y=cosx y'=-sinx 7、y=tanx y'=1\/cos^2x 8、y=cotx y'=-1\/sin^2x 9、y=arcsi...

导数的四则运算法则公式是什么?
导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。一、什么是导数?导数就是“平均变化率“△y\/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。二、基本初等函数的导数公式 高中数学里基本初等函数...

高中数学导数公式有哪些?
十六个基本导数公式 (y:原函数;y':导函数):1、y=c,y'=0(c为常数)2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。4、y=logax, y'=1\/(xlna)(a>0且 a≠1);y=lnx,y'=1\/x。5、y=sinx,y'=cosx。6、y=...

高中导数公式有哪些?有什么用?
高中常用导数公式表如下:原函数:y=c(c为常数),导数: y'=0;原函数:y=x^n,导数:y'=nx^(n-1);原函数:y=tanx,导数: y'=1\/cos^2x;原函数:y=cotx,导数:y'=-1\/sin^2x;原函数:y=sinx,导数:y'=cosx;原函数:y=cosx。导数: y'=-sinx;原函数:y=a^x,导数:y...

相似回答
大家正在搜