第2个回答 2020-09-29
1. f(x) = ∫<0, x> (x-t)e^(-t^2)dt = ∫<0, x> xe^(-t^2)dt - ∫<0, x> te^(-t^2)dt
= x∫<0, x> e^(-t^2)dt - ∫<0, x> te^(-t^2)dt (对 t 积分,x相对于常量,可提到积分号外)
f'(x) = ∫<0, x> e^(-t^2)dt + xe^(-x^2) - xe^(-x^2) = ∫<0, x> e^(-t^2)dt
df(x) = f'(x)dx = [∫<0, x> e^(-t^2)dt] dx
2. dy/dx = y'<t>/x'<t> = 3t^2/(2t) = (3/2)t, t = 2 时, 切线斜率 k = (3/2)t = 3,
切点 (5,8), 切线方程 y-8 = 3(x-5), 即 3x-y-7 = 0
第4个回答 2020-09-29
y->0
(1+y)^(1/6) = 1+(1/6)y +o(y)
y= [(cosx)^4. (cos2x)^3.(cos2x)^2 -1 ]
{1+[(cosx)^4. (cos2x)^3.(cos2x)^2 -1 ] }^(1/6)
=1 +(1/6)[(cosx)^4. (cos2x)^3.(cos2x)^2 -1 ] +o([(cosx)^4. (cos2x)^3.(cos2x)^2 -1 ])
lim(x->0) [-1+{1+[(cosx)^4. (cos2x)^3.(cos2x)^2 -1 ] }^(1/6) ]/x^2
=lim(x->0) [(cosx)^4. (cos2x)^3.(cos2x)^2 -1 ] /(6x^2)本回答被提问者采纳