方法一:实对称矩阵不同特征值对应的特征向量相互正交,由此可得第三个特征值对应的特征向量,进一步可得到第三个特征值。
方法二:实对称矩阵所有特征值的和等于矩阵对角线上元素的代数和,所有特征值的积等于矩阵的行列式的值。据此可得第三个特征值。
实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。
设A是数域P上的一个n阶矩阵,λ是一个未知量,
系数行列式|A-λE|称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。
¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。
如何求解实对称矩阵A的特征值和特征向量?
方法一:实对称矩阵不同特征值对应的特征向量相互正交,由此可得第三个特征值对应的特征向量,进一步可得到第三个特征值。方法二:实对称矩阵所有特征值的和等于矩阵对角线上元素的代数和,所有特征值的积等于矩阵的行列式的值。据此可得第三个特征值。实对称矩阵A的不同特征值对应的特征向量是正交的。实...
实对称矩阵特征值怎么求
求值方法如下:1、特征多项式法:实对称矩阵的特征多项式即为A-λI的行列式,λ为未知数,I为单位矩阵。将特征多项式化简后得到一个关于λ的多项式,其根即为矩阵A的特征值。2、Jacobi迭代法:通过对角化矩阵,将原矩阵转化为对角形(所有非主对角线元素均变成零)求得特征值和相应的正交归一化的特征...
实对称矩阵怎么求它的特征值?
1、首先,确保给定矩阵是实对称矩阵。实对称矩阵满足矩阵的转置等于矩阵本身。2、使用特征值分解的方法,将实对称矩阵表示为特征向量和特征值的乘积形式。特征向量构成的正交矩阵Q,和对角矩阵Λ,A = QΛQ^T,其中,Q是特征向量组成的矩阵,Λ是特征值对角矩阵。3、求解特征值可以转化为求解矩阵A的特...
怎样求实对称矩阵的特征值和特征向量
实对称矩阵的属于不同特征值的特征向量正交,由此可设另一个特征值的特征向量为 (x1,x2,...)^T, 它与已知特征向量正交, 求出基础解系即可。一般情况下, 解出的基础解系所含向量的个数必须是另一个特征值的重数k,因为实对称矩阵k重特征值必有k个线性无关的特征向量,而与已知向量正交的线性...
实对称矩阵求特征值问题 特征值如何求
解: 由已知中的等式知 -1, 1 是A的特征值, 且 (1,0,-1)^T, (1,0,1)^T分别是A的属于特征值-1,1的特征向量.因为 r(A) = 2, 所以|A| = 0. 所以 0 是A的特征值. 设a = (x,y,z)^T 是A的属于0的特征向量, 则由A是3阶实对称矩阵, 所以A的属于不同特征值的特征向量...
实对称矩阵的特征值和特征向量各有什么特殊性质?
1、实对称矩阵A的不同特征值对应的特征向量是正交的。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵...
如何求解实对称矩阵的特征值和特征向量?
实对称矩阵的属于不同特征值的特征向量是正交的,所以属于特征值1和-2的特征向量正交,由特征值-2有特征向量(1,1,-1)可设特征值1的特征向量为(x,y,z),由这两个特征向量正交,则可得方程组 x+y-z=0 由此解得方程组的基础解系,含两个线性无关的向量。就是属于特征值1的两个线性无关...
如何求一个实对称阵的特征值与特征向量
先求特征值:再分别求特征向量:得到矩阵P 显然该实对称矩阵有3个不同的特征值,有3个线性无关的特征向量,因此可以对角化 并且有P^(-1)AP=diag(0,-1,9)
如何理解实对称矩阵的特征值和特征向量?
该情况的性质需要分类讨论,例子如下:1、如果实对称矩阵每行元素之和都相等,那么这个常数就是矩阵的一个特征值,而全1向量就是对应的特征向量。例如,如果3阶实对称矩阵A的各行元素之和均为3,那么3就是A的一个特征值,而[1,1,1]就是对应的特征向量。2、如果实对称矩阵每行元素之和都不相等,...
怎么求特征值和特征向量
此过程中,将每个特征值λ与特征向量a结合在一起,尤其在实对称矩阵情境下,不同特征值的特征向量必定正交。由此,我们构建矩阵P,通过计算其逆矩阵P^(-1),便可解出原始矩阵A为PλP^(-1)。计算矩阵A的特征值,通常通过求解方程pA(λ) = 0实现。对于n×n矩阵A,pA是一个n次多项式,意味着最...