可积可微可导连续之间的关系是什么?

如题所述

可微=>可导=>连续=>可积

可导与连续的关系:可导必连续,连续不一定可导;

可微与连续的关系:可微与可导是一样的;

可积与连续的关系:可积不一定连续,连续必定可积;

可导与可积的关系:可导一般可积,可积推不出一定可导;

可微在一元函数中与可导等价,在多元函数中,各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表示的广义面中在此点领域内不含有“洞”存在,可含有有限个断点。

在区间上不连续,但只存在有限个第一类间断点(跳跃间断点,可去间断点)上述条件实际上为黎曼可积条件,可以放宽,所以只是充分条件,可导必连续,连续不一定可导,即可导是连续的充分条件,连续是可导的必要条件

扩展资料:

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

参考资料来源:百度百科-导数

温馨提示:内容为网友见解,仅供参考
无其他回答

可积可微可导连续之间的关系是什么?
可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;可微在一元函数中与可导等价,在多元函数中,各变量在此点的偏导数存在为其必要条件,其充要条件还要加...

可导与连续、可微、可积之间的关系是什么?
可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;可微=>可导=>连续=>可积

可导可微可积连续是什么关系啊?
可导与连续的关系:可导必连续,连续不一定可导。可微与连续的关系:可微与可导是一样的。可积与连续的关系:可积不一定连续,连续必定可积。可导与可积的关系:可导一般可积,可积推不出一定可导。可微=>可导=>连续=>可积。函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义...

可导,连续,有极限,可积,可微的关系
1、可微等于可导;2、可导就比连续,但连续不一定可导;3、设函数在x0点的某个领域内有定义并且函数趋于x0点的极限等于该点函数值,则函数在这点连续。4、函数在(a,b)上连续,则函数可积。5、若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏...

可导,可微,可积和连续的关系
可导、可微、可积和连续之间的关系是:连续是可导、可微的必要条件,但不是充分条件;可导一定可微;可积性则相对独立,但连续函数在闭区间上一定是可积的。下面详细解释这几者之间的关系。可连续性与可导性、可微性的关系:连续是函数的一种基本性质,它描述的是函数值随自变量变化的平稳程度。对于连续...

函数可微、可导、可积、连续之间的关系 ?相互之间怎么推啊?求大神帮...
在一元的情况下 可导=可微->连续->可积 可导一定连续,反之不一定 二元就不满足了 导数:函数在某点的斜率就是函数在这点的导数 微分:一元情况下,可微和可导意思一样.求导就是求微分.多元就不一样了 积分:积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算 ...

谁能告诉我连续,可微,可导之间的关系?弄不清楚
定理2设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。定理3设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。可积的必要条件:被积函数在闭区间上有界。总结:对于一元函数:函数连续 不一定 可导 例如y=|x| 可导 一定 连续 即连续是可导的必要不充分条件,可导是...

可积,可微,可导,连续之间的关系?20分
连续必定可积,可微未必可积;可导必定连续,连续未必可导;可导和可微是相同概念!

高数 可导 可积 可微 有界 连续 关系
在一元微积分中,可导 可微等价 相对比而言 可导要求的条件最强,可积要求的条件最弱 有可导(可微)必连续,连续必可积 即可导(可微)==>连续==>可积,反之不成立 在多元微积分中,可导和可微是不等价的 只有偏导数,没有导数

有界,可积,可导,可微,连续之间的逻辑关系
一个区间内,有界是可积可导可微连续的前提,连续必可积,可导与可微等价,连续是可导的必要条件而非充分条件,

相似回答
大家正在搜