∫(sinx)^4dx的不定积分是多少?

如题所述

∫(sinx)^4dx的不定积分为3/8*x-1/4cosx*(sinx)^3+3/8*sinx*cosx+C。

解:∫(sinx)^4dx

=∫(sinx)^3*sinxdx

=-∫(sinx)^3*dcosx

=-cosx*(sinx)^3+∫cosxd(sinx)^3

=-cosx*(sinx)^3+3∫cosx*cosx*(sinx)^2dx

=-cosx*(sinx)^3+3∫(cosx)^2*(sinx)^2dx

=-cosx*(sinx)^3+3∫(1-(sinx)^2)*(sinx)^2dx

=-cosx*(sinx)^3+3∫(sinx)^2dx-3∫(sinx)^4dx

则,4∫(sinx)^4dx=-cosx*(sinx)^3+3∫(sinx)^2dx

=-cosx*(sinx)^3+3/2∫(1-cos2x)dx

=-cosx*(sinx)^3+3/2*x-3/2∫cos2xdx

=-cosx*(sinx)^3+3/2*x-3/4*sin2x+C

=3/2*x-cosx*(sinx)^3+3/2*sinx*cosx+C

不定积分的公式:

1、∫adx=ax+C,a和C都是常数

2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1

3、∫1/xdx=ln|x|+C

4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1

5、∫e^xdx=e^x+C

6、∫cosxdx=sinx+C

7、∫sinxdx=-cosx+C

8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C

温馨提示:内容为网友见解,仅供参考
无其他回答

∫(sinx)^4dx的不定积分是多少?
∫(sinx)^4dx的不定积分为3\/8*x-1\/4cosx*(sinx)^3+3\/8*sinx*cosx+C。解:∫(sinx)^4dx =∫(sinx)^3*sinxdx =-∫(sinx)^3*dcosx =-cosx*(sinx)^3+∫cosxd(sinx)^3 =-cosx*(sinx)^3+3∫cosx*cosx*(sinx)^2dx =-cosx*(sinx)^3+3∫(cosx)^2*(sinx)^2dx =-cosx*(...

∫( sinx)^4dx的不定积分是多少?
∫(sinx)^4dx的不定积分为3\/8*x-1\/4cosx*(sinx)^3+3\/8*sinx*cosx+C。sinx4次方的定积分为3\/8*x-1\/4cosx*(sinx)^3+3\/8*sinx*cosx+C。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值...

sin^4xdx的不定积分
∫(sinx)^4dx=(sin4x)\/32 - (sin2x)\/4 + (3x\/8) + C。C为积分常数。解答过程如下:=∫(sinx)^4dx =∫(1-cos²x)²dx 【利用公式cos²x+sin²x=1】=∫(1 - cos2x)\/2)^2dx 【利用公式cos²x=(cos2x+1)\/2】=∫(1 - 2cos2x + (cos2x)^...

(sinx)^4的不定积分是什么
∫ (sinx)^4dx =1\/4∫(1-cos(2x))²dx = 1\/4∫(1-2cos(2x)+(1+cos(4x))\/2)dx =3\/8 x-1\/4sin(2x)+1\/32 sin(4x)+C 基本介绍 积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。

sin x 的四次方 的不定积分怎么求?
=(1\/4)∫[1-2cos2x+(1\/2)(1+cos4x)]dx =(3\/8)∫dx-(1\/2)∫cos2xdx+(1\/8)∫cos4xdx =(3\/8)∫dx-(1\/4)∫cos2xd2x+(1\/32)∫cos4xd4x =(3\/8)x-(1\/4)sin2x+(1\/32)sin4x+C 一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续...

sin x 的四次方 的不定积分怎么求
∫(sinx)^4dx =∫[(1\/2)(1-cos2x]^2dx =(1\/4)∫[1-2cos2x+(cos2x)^2]dx =(1\/4)∫[1-2cos2x+(1\/2)(1+cos4x)]dx =(3\/8)∫dx-(1\/2)∫cos2xdx+(1\/8)∫cos4xdx =(3\/8)∫dx-(1\/4)∫cos2xd2x+(1\/32)∫cos4xd4x =(3\/8)x-(1\/4)sin2x+(1\/32)sin4x+C...

正弦函数的4次方的不定积分
∫(sinx)^4dx =∫[(sinx)^2]^2dx =∫1\/4(1-cos2x)^2dx =∫1\/4[1-2cos2x+(cos2x)^2]dx =∫1\/4[1-2cos2x+(1+cos4x)\/2]dx =∫(3\/8-1\/2cos2x+1\/8cos4x)dx =3\/8x-1\/4sin2x+1\/32sin4x+C

求函数sinx^4dx的不定积分。
(sinx)^4 = (sinx^2)^2 = ((1 - cos2x)\/2)^2 = (1 - 2cos2x + (cos2x)^2)\/4 = 0.25 - 0.5cos2x + 0.125(1 + cos4x)= (cos4x)\/8 - (cos2x)\/2 + 3\/8 ∫ (sinx)^4dx = ∫ ((cos4x)\/8 - (cos2x)\/2 + 3\/8)dx = ∫ ((cos4x)\/8)dx - ∫ ((...

∫(sinx)∧4dx的不定积分
回答:-1\/4 cosx

求不定积分sin4次方xdx
∫(sinx)^4dx=∫(sinx)^2*(sinx)^2dx=∫((1\/2)*(1-cos2x))*((1\/2)*(1-cos2x))dx =∫(1\/4)*(1+(cos2x)^2-2cos2x)dx=(1\/4)x+(1\/4)∫(cos2x)^2dx-(1\/4)sin2x =(1\/4)x+(1\/8)∫(cos4x+1)dx-(1\/4)sin2x =(3\/8)x+(1\/32)sin4x-(1\/4)sin2x+c 打字...

相似回答
大家正在搜