用4种方法验证勾股定理(图文)
赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab\/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:4...
勾股定理验证方法及对应图形
勾股定理验证方法及对应图形介绍如下:1、证法一(课本的证明):如上图所示两个边长为饥贺a+b的正方形面积相等,所以a^2+b^2+4•(1\/2)•ab=c^2+4•(1\/2)•ab,故a^2+b^2=c^2。2、证法二(赵爽弦图证明):以a、b为直角边,以c为斜边做四个全等的三...
勾股定理的证明方法(要有图)
利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http:\/\/ett.edaedu.com\/21010000\/vcm\/0720ggdl.doc 勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用...
怎样用四个全等的直角三角形拼图证明勾股定理?(请附图说明)
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令...
验证勾股定理的方法
方法1:三国时期吴国数学家赵爽,在《周髀算经》的注释中记载“勾股各自乘,并之为玄实,开方除之即弦”。并通过“勾股圆方图”证明了勾股定理。说明:大正方形的面积等于4个直角三角形加上一个小正方形面积之和。方法2:爱因斯坦的验证,爱因斯坦在11岁时获得了一本几何书,有一天叔叔给他讲勾股定理...
勾股定理验证方法
勾股定理验证方法如下:1、构造法:构造一个直角三角形,其中两条直角边的长度分别为a和b,斜边的长度为c。通过计算斜边的平方,并与两直角边的平方之和进行比较,如果相等,则验证了勾股定理。2、拼接法:将两个相同的直角三角形拼接成一个正方形。正方形的边长等于斜边c,因此正方形的面积等于c...
勾股定理证明方法,一定要加图,每一种一张图
勾股定理拼图验证 拼图证法一 如图,正方形ABCD的面积 = 4个直角三角形的面积 + 正方形PQRS的面积 ∴ (a + b )2 = 1\/2 ab × 4 + c2 a2 + 2ab + b2 = 2ab + c2 故 a2 + b2 =c2 拼图证法二 图1中,甲的面积 = (大正方形面积)- (4个直角三角形面积)。图2中,乙和丙的...
勾股定理的验证方法
勾股定理的验证方法如下:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊.1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等.左图与...
验证勾股定理的方法
验证勾股定理的方法如下:1、以ab为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。2、勾股定理,是一个基本的几何定理,指直角三角...
勾股定理的证明方法
勾股定理的证明方法如下:求证:勾股定理,即直角三角形的两条直角边的平方和等于斜边的平方。证明:分两种情况来讨论,即两条直角边长度不相等与相等。两条直角边长度不相等。如图,分别设直角三角形的边长为a、b、c,(a