跪求!!!人教版初,高中所有数学公式和概念!!!以及经典例题详解.....

谁能帮我找到从初一到高三数学书上所有的公式和概念以及经典例题详解?(例题越多越好,要详细。)最好能把高三总复习的所有数学公式和概念也找来,要有经典例题详解。

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

温馨提示:内容为网友见解,仅供参考
第1个回答  2011-01-04
有公式就没有题目,有题目就没有公式。公式我有但有30多页,题目我也有但是是安章节分类的,没办法传到上面来,太大!本回答被网友采纳
第2个回答  2011-01-10
对数的性质及推导
用^表示乘方,用log(a)(b)表示以a为底,b的对数
*表示乘号,/表示除号

定义式:
若a^n=b(a>0且a≠1)
则n=log(a)(b)

基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)

推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)

3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N) = log(a)(M) - log(a)(N)

4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式
log(a)(N)=log(b)(N) / log(b)(a)

推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]

综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)

性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n) / ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导 完 )

公式三:
log(a)(b)=1/log(b)(a)

证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1

三角函数的和差化积公式
sinα+sinβ=2sin(α+β)/2·cos(α-β)/2
sinα-sinβ=2cos(α+β)/2·sin(α-β)/2
cosα+cosβ=2cos(α+β)/2·cos(α-β)/2
cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2

三角函数的积化和差公式
sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]
cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)]
cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]
sinα ·sinβ=-1/2 [cos(α+β)-cos本回答被提问者采纳
第3个回答  2011-01-15
BU ZHI
第4个回答  2011-01-04
1+1=2

跪求!高中所有数学公式、定律,要非常详细
圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 、h-a边上的高 、s-周长的一半 、A,B,C-内...

初中和高中所有的公式
36. 推论2有一个角等于60°的等腰三角形是等边三角形 37. 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38. 直角三角形斜边上的中线等于斜边上的一半 39. 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40. 逆定理和一条线段两个端点距离相等的点,在这条线...

高中三年 人教版理科 数学 物理 的全部公式和字母代表的意思 谢谢...
高中物理公式,规律汇编表 一,力学 胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关) 重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力) 3 ,求F,的合力:利用平行四边形定则. 注意:(1) 力的合成和分解都均遵从平行...

高中数学所有公式
5、常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法前面减去一个1,后面加一个,再整体加一个2。6、适用于标准方程(焦点在x轴)公式:k椭=-{(b²)x₀}\/{(a²)y₀};k双={(b²)x₀}\/{(a²)y₀};k抛=...

初中、高中数学里的所有定义和公式? 急求!
·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1\/2)sin(α+t),其中 sint=B\/(A^2+B^2)^(1\/2)cost=A\/(A^2+B^2)^(1\/2)·倍角公式:sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα\/[1-tan^2(α)]·三倍...

所有的高中文科数学公式
6.万能公式 sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab 1+...

跪求高中数学所有的公式定理定义
④数轴法 3.集合的运算 ⑴ A∩(B∪C)=(A∩B)∪(A∩C) ⑵ Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 4.集合的性质 ⑴n元集合的子集数:2n 真子集数:2n-1;非空真子集数:2n-2 高中数学概念总结 一、 函数 1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数...

高中阶段所有详细数学公式及例题
一、基本概念:1、 数列的定义及表示方法:2、 数列的项与项数:3、 有穷数列与无穷数列:4、 递增(减)、摆动、循环数列:5、 数列{an}的通项公式an:6、 数列的前n项和公式Sn:7、 等差数列、公差d、等差数列的结构:8、 等比数列、公比q、等比数列的结构:二、基本公式:9、一般数列的通...

高中必备:高中数学所有公式大全,分类整理,值得收藏
1. 常用符号 2. 基本算法语句 二、基本初等函数 1. 概念与符号 2. 常用公式 三、函数应用 1. 概念与符号 2. 常用公式、定理 四、空间几何体 1. 常用公式 2. 常用定理 五、点、线、面的位置关系 1. 概念与符号 2. 常用定理 六、空间向量与立体几何 1. 常用公式 2. 常用定理 七、直线与...

初中-高中所有的数学公式(要字母公式不要文字公式)
帮助的人:79.8万 我也去答题访问个人页 展开全部 高中的公式对数的性质及推导 用^表示乘方,用log(a)(b)表示以a为底,b的对数 *表示乘号,\/表示除号 定义式: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)...

相似回答