t检验与F检验两者之间有3点不同,具体介绍如下:
一、两者的目的不同:
1、t检验的目的:t检验的目的是为了检验某一个解释变量对被解释变量的影响。
2、F检验的目的:F检验的目的是为了检验所有的解释变量对被解释变量的影响。
二、两者的使用场合不同:
1、t检验的使用场合:已知一个总体均数;可得到一个样本均数及该样本标准差;样本来自正态或近似正态总体。
2、F检验的使用场合:假设一系列服从正态分布的母体,都有相同的标准差。这是最典型的F检验,该检验在方差分析(ANOVA)中也非常重要。假设一个回归模型很好地符合其数据集要求,检验多元线性回归模型中被解释变量与解释变量之间线性关系在总体上是否显著。
三、两者的实质不同:
1、t检验的实质:主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。[1] t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
2、F检验的实质:通常用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。
参考资料来源:百度百科-F检验
参考资料来源:百度百科-t检验
参考资料:标准答案
本回答被提问者和网友采纳