用零点定理证明:
一、证明方程x的三次方+x-3=0至少存在一个正实根。
二、证明方程x乘以2的x次方=1至少有一个小于1的正根。
(以上两个问题最主要是想请教大家,如何找出那两个根的,不要直接告诉我根是什么,我最主要是想知道根是如何求出来的,谢谢大家了)
高数极限难题的解题技巧有什么?
数值逼近法:对于一些难以直接求解的极限问题,我们可以尝试使用数值方法来逼近极限值。例如,可以使用计算机编程来计算函数在某一点的近似值,从而得到极限的近似解。总之,在解决高数极限难题时,我们需要灵活运用各种解题技巧,结合具体问题的特点来选择合适的方法。同时,多做题、多思考、多总结经验,有助于...
高数极限难题如何解析?
练习和经验:解决高数极限难题需要大量的练习和经验积累。通过不断地解题,你可以熟悉各种类型的极限问题和解决方法。总之,解决高数极限难题没有一成不变的方法,需要根据具体问题灵活运用不同的策略和技巧。理解和掌握基本的极限概念、定理和方法,结合逻辑推理和实践经验,是解决这些问题的关键。
高数一些小问题
1、你不仅数学没有学好,语文也是奇差,看看你的问题,言不达意!2、总结起来,你可能有三个问题没有明白,什么是极限,什么是无穷小,什么是无穷大,他们之间的关系是什么;3、极限,就是函数(数列)在自变量无限接近却永远不能达到时,因变量的取值。极限收敛就意味着,极限值是常数(包括0),极...
高数的一些问题?
问题一:高等数学中所有等价无穷小的公式 当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx;x~ln(1+x)~(e^x-1);(1-cosx)~x*x\/2;[(1+x)^n-1]~nx;loga(1+x)~x\/lna;a的x次方~xlna;(1+x)的1\/n次方~1\/nx(n为正整数);注:^ 是乘方,~是等价于,这是我做题的时候总...
高数问题
如立方函数:f(x)=x^3,(0,0)是驻点,但非极值点. (因为函数在R上为单调递增)C. 函数在极值点一定连续 (错)如分段函数:f(x)=x^2, x不等於0,=3, x等於0 (0,3)是极值点, 但不连续.D. 函数的极点值不一定可导 (对)如上例, 分段函数: f(x)=|x|,(0,0)是极值点,...
高数极限难题如何汇总?
收集题目:首先,你需要从各种教材、习题集、网络资源等途径收集高数极限难题。可以关注一些数学论坛、微信公众号、知乎等平台,这些地方经常会有人分享和讨论高数极限问题。同时,可以查阅一些经典的高等数学教材,如《数学分析》、《高等数学》等,这些书籍中往往包含了许多典型的极限问题。分类整理:将收集到...
高数小问题df(x)和f(x)dx有什么区别?
1、含义不同:df(x)是对f(x)求导。f(x)dx是f(x)的微分。2、定义不同:dF(x)就是lim[x→0](ΔF(x)),dx就是lim[x→0](Δx)。dF(x)=f(x)dx,就是F(x)的微分等于 F(x)的导数f(x)乘上x的微分。,3、写法不同:df(x)的最后结果没有dx,而f(x)dx有。
高数求极限的问题
2\/3。分子的导数=d(x²)\/dx × sin √(x²)=2x sin(x),分母的导数=3x²,所以用洛必达法则,极限=2\/3 * sin(x)\/x = 2\/3。分子这种形式的导数(从g(x)到h(x)的积分 f(t)dt),对于x的导数就是f(h(x)) × h'(x)-f(g(x)) × g'(x)。
为什么高数听懂了一做题啥都不会
解题技巧和应用能力不够熟练也是一个重要原因。高数问题的解决往往需要一些技巧和方法,例如函数图像绘制、导数的求解、积分的计算等。初学者对这些技巧和方法可能不够熟练,导致在做题时缺乏灵活性和准确性。为应对这些问题,我们可以采取一系列的解决方法。首先,要加强对高数概念的理解,可以通过多阅读相关...
有关高数的问题
不是无穷大。证明,M=1,对任意的X>0,存在x0=2kπ+π\/2,满足:x0=2kπ+π\/2>X,而|x0cosx0|=|(2kπ+π\/2)cos(2kπ+π\/2)|=0<M=1,所以不是无穷大。但无界。证明:对任意的M>0,存在x0=2kπ,满足:x0=2kπ>M |x0cosx0|=|2kπcos(2kπ)|=2kπ>M 所以无界。,...