设等比数列{a n }的前n项之和为S n ,已知a 1 =2011,且 a n +2 a n+1 + a n+2 =0(n∈ N ? ) ,则S 2012 =______.
设等比数列{a n }的前n项和为S n .已知a n+1 =2S n +2( )(1)求数列{...
(1) (2)见解析 试题分析:(1)利用S n 与a n 之间的关系 ,即可得到关于a n+1 ,a n 的递推式,证明a n 为等比数列,且可以知道公比,当n=1时,可以得到a 1 与a 2 之间的关系,在根据a n 等比数列,可以消掉a 2 得到首项的值,进而得到通项公式.(2)根据等差数列公差...
已知等比数列{a n }的前n项和为S n ,公比q≠1,若a 1 =1且a n+2 +a...
∵a n+2 +a n+1 -2a n =0,∴a n q 2 +a n q-2a n =0,∴q 2 +q-2=0,解得q=-2,或q=1(舍去)∴S 6 = a 1 (1- q 6 ) 1-q = 1×(1- 2 6 ) 1-(-2) =-21故答案为:-21 ...
设等比数列{a n }的前n项和为S n ,已知 a n+1 =2 S n +2(n∈ N *...
(1)n≥2时,由a n+1 =2S n +2,得a n =2S n-1 +两式相减可得:a n+1 -a n =2a n ,∴a n+1 =3a n ,即数列{a n }的公比为3∵n=1时,a 2 =2S 1 +2,∴3a 1 =2a 1 +2,解得a 1 =2,∴a n =2×3 n-1 ;(2)由(1)知a n =2×3 n-1 ,a ...
(理科)设等比数列{an}的前n项和为Sn,已知a1=2,且an+2an+1+an+2=0(n...
∵an+2an+1+an+2=0∴an+2anq+anq2=0即1+2q+q2=0∴q=-1S2010=2(1?(?1)2010)1?(?1)=0故选B
设数列{a n }的前n项和为S n ,已知a 1 =1,a n+1 =2S n+1 (n∈N*...
解:(1)由a n+1 =2S n +1,得a n =2S n-1 +1(n≥2),两式相减,得a n+1 -a n =2a n ,即a n+1 =3a n (n≥2),又a 2 =2S 1 +1=3,所以a 2 =3a 1 ,故{a n }是首项为1,公比为3的等比数列,所以a n =3 n-1 。 (2)设{b n }的公差为d,由T 3 ...
数列{a n }的前n项和记为S n ,已知a 1 =1,n?a n+1 =(n+2)S n (n=1...
∴ { S n n } 是以1为首项,2为公比的等比数列(2)∵ S n n =1?2 n-1 =2 n-1 ,∴S n =n?2 n-1 .(3)猜测:存在N 0 =8,当n>8时有S n >2007恒成立∵ S n+1 S n = (n+1)? 2 n n? 2 n-1 = 2(...
数列{a n }的前n项和为S n ,且满足a 1 =1,2S n =(n+1)a n ,(I)求a...
2 1 =n ,∴a n =n;且a 1 =1也适合,所以a n =n.(II) 1 a 2n+1 -1 = 1 (n+1) 2 -1 = 1 n(n+2) = 1 2 ( 1 n - 1 n+2 ) W n = 1 1?3 + 1 2?4 + ...
已知数列{a n }的前n项和为S n ,且满足 a 1 = 1 2 ,a n +2S n S n...
(Ⅰ)数列 { 1 S n } 是以2为首项,2为公差的等差数列.证明如下:∵n≥2时,a n +2S n S n-1 =0,∴S n -S n-1 +2S n S n-1 =0∴ 1 S n - 1 S n-1 =2∵ a 1 = 1 2 ,∴ 1 S 1 =2∴数列 { ...
已知数列{a n }的前n项和为S n ,且满足a 1 = ,a n +2S n S n﹣1 =...
解:(1)S 1 =a 1 = ,∴ 当n≥2时,a n =S n ﹣S n﹣1 =﹣2S n S n﹣1 ,∴ ∴ 为等差数列,首项为2,公差为2(2)由(1)知 =2+(n﹣1)×2=2n,∴ 当n≥2时, ∴ (3) = =
设数列{a n }的前n项和为s n ,a 1 =1,a n = s n n +2(n-1) ,(n∈N...
以2为公差的等差数列∴s 1 + s 2 2 + s 3 3 +…+ s n n -(n-1) 2 = n×1+ n(n-1) 2 ×2 -(n-1) 2 =n 2 -(n-1) 2 =2n-1由题意可得,2n-1=2013解可得n=1007故选A ...