已知等比数列{a n }的前n项和为S n ,公比q≠1,若a 1 =1且a n+2 +a n+1 -2a n =0(n∈N * ),则S 6 =______.
...n ,公比q≠1,若a 1 =1且a n+2 +a n+1 -2a n =0(n∈N * ),则S 6...
∵a n+2 +a n+1 -2a n =0,∴a n q 2 +a n q-2a n =0,∴q 2 +q-2=0,解得q=-2,或q=1(舍去)∴S 6 = a 1 (1- q 6 ) 1-q = 1×(1- 2 6 ) 1-(-2) =-21故答案为:-21 ...
已知等比数列{a n }的前n项和为S n ,公比为q(1)若m,n∈N * ,证明: S...
S m 若q≠1,则S m+n =S n +a n+1 +a n+2 +…+a n+m = S n + q n (a 1 + a 2 +…+ a m ) = S n + q n ? S m 综上, S m+n = S n + q n ? S m ;(2)∵S n 、S n+2 ...
设a1=a2=1,an+1=an+an-1,n=2,3…令xn=an+1\/an,证明数列xn收敛于
先构造等比数列:令a<n+1>+A*a<n>=B*(a<n>+A*a<n-1>),得到a<n+1>=(B-A)*a<n>+A*B*a<n-1> 因此B-A=1且A*B=1 任取一个解:A=-(√5+1)\/2,B=-(√5-1)\/2 则a<n+1>-1\/2(√5+1)*a<n>=(-1\/2(√5-1))^n (n>=1)然后再构造一次等比数列:令...
设数列{a n }的前n项和为S n ,满足 2 S n = a n+1 - 2 n+1 +1,(n...
-3①,2(a 1 +a 2 )=a 3 -7② ∵a 1 ,a 2 +5,a 3 成等差数列 ∴2(a 2 +5)=a 1 +a 3 ,③ ∴由①②③可得a 1 =1;(2)证明:∵ 2 S n = a n+1 - 2 n+1 +1 ,∴ 2 S n-1 = a n - 2 n +1 (n≥2)两式相减可得 2 a n = a n+1 - ...
已知等比数列{a n }的前n项和为S n ,对任意n∈N*,都有S n = 2 3...
1 = 2 3 a 1 - 1 3 ,解得a 1 =-1;令n=2,得s 2 =a 1 +a 2 =-1+a 2 = 2 3 a 2 - 1 3 ,解得a 2 =2,所以公比q=-2所以a k =a 1 q k-1 =-1×(-2) k-1 =8,解得k=4故选D ...
等差数列{a n }的前n项和记为S n ,已知a 10 =30,a 20 =50.(1)求数列...
(1)由a n =a 1 +(n-1)d,a 10 =30,a 20 =50,得方程组 a 1 +9d=30 a 1 +19d=50 ,…(2分)解得a 1 =12,d=2.…(4分)∴a n =12+(n-1)?2=2n+10.…(5分)(2)由 S n =n a 1 + n(n-1) 2 d, S n...
数列{a n }的前n项和记为S n ,已知a n =5S n -3(n∈N)求 lim n→∞...
数列{a n }是首项a 1 = 3 4 ,公比q=- 1 4 的等比数列.由此知数列a 1 ,a 3 ,a 5 ,,a 2n-1 ,是首项为a 1 = 3 4 ,公比为 (- 1 4 ) 2 的等比数列.∴ lim n→∞ (a 1 +a 3 +a 5 ++a 2n-1 )= 3...
设等比数列{a n }的公比q<1,前n项和为S n .已知a 3 =2,S 4 =5S 2...
当q=﹣1时,通项公式a n =2×(﹣1) n﹣1 ;当q=﹣2时,通项公式 .
...n 的前n项和为S n ,若 lim n→∞ S n S n+1 =1 ,则
的前n项和为S n ,且 lim n→∞ S n S n+1 =1 ,分情况讨论:①,q=1时,lim n→∞ S n S n+1 = lim n→∞ n n+1 =1,②,q≠1时,lim n→∞ a 1 (1- q n )1-q a 1 (1- q n+1 )1-q = lim n→∞ 1- q n 1- q n+1 =1,∴0<q<1.综合可得...
设等比数列{a n }的前n项和为S n ,那么,在数列{S n }中( ) A.任一项...
由等比数列的求和公式可得当q=1时,S n =na 1 ≠0,即此时和中的任意一项都不为0当q≠1时, S n = a 1 (1- q n ) 1-q ,若公比q=-1时,则可得和中的偶数项都为0,即此时和中有无穷多项为0故选D ...