等比数列{a n }的前n项和为S n ,且2S n =S n+1 +S n+2 ,则公比q=______.
∵2S n =S n+1 +S n+2 ∴2S n =S n +a 1 q n +S n +a 1 q n +a 1 q n q,即2a 1 q n +a 1 q n+1 =0 ∵数列{a n }为等比数列 ∴a 1 ≠0,q≠0 ∴2+q=0 ∴q=-2 故答案为-2 |
...前n项和为S n ,若S n +1 、S n 、S n +2 成等差数列,则q=...
-2 , , ∵ ∴ (a 1 ≠0)∴ 或 (舍去).
若无穷等比数列{a n }的前n项和为S n ,其各项和为S.又S=S n +2a n...
设等比数列的首项为a 1 ,公比为q则由等比数列的各项和存在可知q≠1S n = a 1 (1- q n ) 1-q , a n = a 1 q n-1 S= lim n→∞ S n = lim n→∞ a 1 (1- q n ) 1-q = a 1 1-q ...
等比数列{an}的前n项和是Sn,若2S2=S1+S3,求公比q的值 详细过程,谢谢了...
2S₂=S₁+S₃,变形得 S₂-S₁=S₃-S₂即 a₂= a₃而数列为等比数列,所以 q=1
等比数列{a n }的前n项和为S n ,已知S 1 ,2S 2 ,3S 3 成等差数列,则{a...
∵等比数列{a n }的前n项和为S n ,已知S 1 ,2S 2 ,3S 3 成等差数列,∴a n =a 1 q n-1 ,又4S 2 =S 1 +3S 3 ,即4(a 1 +a 1 q)=a 1 +3(a 1 +a 1 q+a 1 q 2 ),解 q= 1 3 .故答案为 1 3 ...
等比数列{a n }的前n项和为S n ,已知a 3 =2S 2 +1,a 4 =2S 3 +1,则...
∵a 3 =2S 2 +1,a 4 =2S 3 +1,∴a 4 -a 3 =2S 3 -2S 2 =2(S 3 -S 2 )=2a 3 ,∴a 4 =3a 3 ,即公比q= a 4 a 3 =3故选B
等比数列{an}中,若前n项的和为Sn=2n-1,则a+a22+…+an2=___
简单分析一下,详情如图所示
已知数列{a n }的前n项和为S n ,且满足a n +S n =2.(1)求数列{a n }...
解:(1)当n=1时,a 1 +S 1 =2a 1 =2,则a 1 =1. 又a n +S n =2,∴a n+1 +S n+1 =2,两式相减得 ,∴{a n }是首项为1,公比为 的等比数列,∴ (2)反证法:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r)则 ,∴22 r﹣...
设等比数列{an}的前n项和为sn,已知an+1=2sn+2(n属于正整数)。1》求数...
an=2s(n-1)+2 相减a(n+1) -an=2an a(n+1)=3an n=1代入a2=2a1+2,a1=2 an=2*3^(n-1)2、dn=(a(n+1)-an)\/(n+1)=2an\/(n+1)=4*3^(n-1)\/(n+1)d1=2,d2=4,d3=9,d4=108\/5=21.6,d5=4*81\/6=54,d6=4*243\/7=138.9 计算得1\/d1+1\/d2+1\/d3+1...
设数列{an}的前n项和为Sn,满足2Sn=an+1-2^(n+1)+1,且a1,a2+5.a3成...
即a(n+1)=3an+2^n 所以a(n+1)+2^(n+1)=3*(an+2^n)an+2^n=(a1+2^1)*3^(n-1)=3^n an=3^n-2^n 证明只要证1\/a1+1\/a2+...1\/an<(3\/2)*(1-(1\/2)^n)又(3\/2)*(1-(1\/3)^n)是首相为1\/3,公比为1\/2的等比数列前n项之和 故只要证明1\/an<1\/3...
已知数列{a n }的前n项和为S n ,且S n =n 2 .数列{b n }为等比数列,且...
(1)∵数列{a n }的前n项和为S n ,且S n =n 2 ,∴当n≥2时,a n =S n -S n-1 =n 2 -(n-1) 2 =2n-1.当n=1时,a 1 =S 1 =1亦满足上式,故a n =2n-1,(n∈N*). 又数列{b n }为等比数列,设公比为q,∵b 1 =1,b 4 =b 1 q 3 =8,∴...