已知数列{a n }的前n项和为S n ,且S n =n 2 .数列{b n }为等比数列,且b 1 =1,b 4 =8.(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足 c n = a b n ,求数列{c n }的前n项和T n ;(3)在(2)的条件下,数列{c n }中是否存在三项,使得这三项成等差数列?若存在,求出此三项;若不存在,说明理由.
已知数列{a n }的前n项和为S n ,且S n =n 2 .数列{b n }为等比数列,且...
(1)∵数列{a n }的前n项和为S n ,且S n =n 2 ,∴当n≥2时,a n =S n -S n-1 =n 2 -(n-1) 2 =2n-1.当n=1时,a 1 =S 1 =1亦满足上式,故a n =2n-1,(n∈N*). 又数列{b n }为等比数列,设公比为q,∵b 1 =1,b 4 =b 1 q 3 =8,∴...
已知数列{a n }的前n项和为S n ,且S n =n 2 .数列{b n }为等比数列,且...
(Ⅰ)∵数列{a n }的前n项和为S n ,且S n =n 2 ,∴当n≥2时,a n =S n -S n-1 =n 2 -(n-1)2=2n-1.当n=1时,a 1 =S 1 =1亦满足上式,故an=2n-1,(n∈N * ). 数列{b n }为等比数列,设公比为q,∵b 1 =1,b 4 =b 1 q 3 =8,∴q=2...
已知数列{a n }的前n项和为S n ,且S n =n 2 +2n.数列{b n }中,b 1...
(1)n=1时,a 1 =S 1 =3,n≥2时,a n =S n -S n-1 =(n 2 +2n)-(n-1) 2 -2(n-1)=2n+1,且n=1时也适合此式,故数列{a n }的通项公式是a n =2n+1;(2)依题意,n≥2时, b n = a b n-1 =2 b n-1 +1 ,∴b n +1=2...
已知数列{a n } 的前n项和为S n ,且S n =2a n -2,(n=1,2,3,…);数列...
(1分)即a n =2a n-1 ,∴数列{a n }是等比数列.∵a 1 =S 1 =2a 1 -2,∴a 1 =2∴a n =2 n . …(3分)∵点P(b n ,b n+1 )在直线x-y+2=0上,∴b n+1 -b n =2,即数列{b n }是等差数列,又b 1 =1,∴b n =2n-1.…(5分)(Ⅱ)由题意...
已知数列{a n }的前n项和为S n ,且S n =2a n -2(n∈N * ),在数列{b...
由S n =2a n -2得:S n-1 =2a n-1 -2(n≥2),两式相减得:a n =2a n -2a n-1 ,即 a n a n-1 =2(n≥2),又a 1 =2a 1 -2,∴a 1 =2,∴数列{a n }是以2为首项,2为公比的等比数列,∴a n =2 n .∵点P(b n ,b n+1 )在直线x-...
设数列{a n }的前n项和为S n =2n 2 ,{b n }为等比数列,且a 1 =b...
解:(1)设等比数列 的公比为q, 当n≥2时, ;当n=1时, ; 所以, , 又 ,所以, ,于是, ,所以, 。(2)由(1)可得, ,数列 的前n项和 , ① 则 , ② 由①-②得, ,所以, 。
已知数列{a n }的前n项和S n 满足S n =2a n -1,等差数列{b n }满足b...
(3分)∴数列{a n }是以a 1 =1为首项,2为公比的等比数列,∴ a n = 2 n-1 , S n = 2 n -1 …(5分)设{b n }的公差为d,b 1 =a 1 =1,b 4 =1+3d=7,∴d=2∴b n =1+(n-1)×2=2n-1…(8分)(2) c n = 1 b ...
...和Sn=n^2(n∈N* ),数列{bn}为等比数列,且满足b1=a1,2b3=b4._百度...
(1)an=Sn-S(n-1)=n^2-(n-1)^2=2n-1 b1=a1=1 2b1q^2=b1q^3解得q=2 bn=2^(n-1)(2)错位相减 Tn=1*1+3*2+5*4+7*8+...+(2n-1)*2^(n-1)2Tn=1*2+3*4+5*8+7*16+...+(2n-1)*2^n Tn-2Tn=1+(3-1)*2+(5-3)*4+(7-5)*8+...+[(2n-1)-...
...已知数列{ a n }的前 n 项和为 S n ,且 a n 是 S n 与2的等差中项...
解:(1)∵ a n 是 S n 与2的等差中项 ∴ S n =2 a n -2 ∴ a 1 = S 1 =2 a 1 -2,解得 a 1 ="2" a 1 + a 2 = S 2 =2 a 2 -2,解得 a 2 ="4" (2)∵ S n =2 a n -2, S n -1 =2 a n -1 -2,又 ...
已知数列{a n }的前n项和为S n ,满足S n =2a n -n(1)求数列{a n }的...
1 =2a 1 -1,∴a 1 =1当n≥2时,S n =2a n -n ①S n-1 =2a n-1 -n+1 ②①-②得a n =2a n-1 +1即a n +1=2(a n-1 +1)∵a 1 +1=2≠0∴a n-1 +1≠0∴ a n +1 a n-1 +1 =2 ∴{a n +1}是以首项为2,公比为2的等比数...