求数列1\/1*2*3,1\/2*3*4,1\/3*4*5,1\/4*5*6...的前n项和
楼上2位合一起为正解1\/1*2*3+1\/2*3*4+1\/3*4*5+1\/4*5*6={(1\/1*2-1\/2*3)+(1\/2*3-1\/3*4)+...+[1\/n*(n+1)-1\/(n+1)*(n+2)]}\/2=[1\/2-1\/(n+1)*(n+2)]\/2=[(n+1)(n+2)-2]\/4(n+1)(n+2)...
求数列1\/1x2,1\/2x3,1\/3x4,1\/4x5...的前n项和---
由于1\/1x2=1-1\/2 1\/2x3=(1\/2)-(1\/3)1\/3x4=(1\/3)-(1\/4)……1\/n(n+1)=(1\/n)-(1\/n+1)所以前n项的和为1-(1\/n+1)
求数列1\/1x2,1\/2x3,1\/3x4,1\/4x5...的前n项和---
由于1\/1x2=1-1\/2 1\/2x3=(1\/2)-(1\/3)1\/3x4=(1\/3)-(1\/4)……1\/n(n+1)=(1\/n)-(1\/n+1)所以前n项的和为1-(1\/n+1)
1\/1×2×3+1\/2×3×4+1\/3×4×5+1\/4×5×6+1\/5×6×7=的解题技巧?
1\/((n-1)*n*(n+1))=0.5*(1\/(n-1)*n-1\/n*(n+1))=0.5*[(1\/(n-1)-1\/n)-(1\/n-1\/(n+1))]=0.5*(1\/(n-1)+1\/(n+1)-2\/n) 也就是说1乘2乘3的分之一就是1加上3分之一减去2分之2,再乘以0.5后得到结果6分之一 记住这个公式哦 高三毕业都要用的哈...
1\/1*2*3+1\/2*3*4+1\/3*4*5...1\/99*100*101
1\/(1×2×3)=【1\/(1×2)-1\/(2×3)】×1\/2; 1\/(2×3×4)=【1\/(2×3)-1\/(3×4)】×1\/2,;……所以原式=【(1\/(1×2)-1\/(2×3)+1\/(2×3)-1\/(3×4)+……+1\/(99×100)-1\/(100×101)】×1\/2=(1\/2-1\/10100)×1\/2=5049\/20200。
1\/1*2*3+1\/2*3*4+1\/3*4*5+1\/4*5*6的简便计算方法
1\/[n(n+1)(n+2)]=0.5[1\/n-2\/(n+1)+1\/(n+2)]则原式子 =0.5(1-2\/2+1\/3+1\/2-2\/3+1\/4+1\/3-2\/4+1\/5+1\/4-2\/5+1\/6)=0.5(1-1\/2-1\/5+1\/6)=7\/30
1\/1*2*3+1\/2*3*4+1\/3*4*5+1\/4*5*6 解题技巧
1\/((n-1)*n*(n+1))=0.5*(1\/(n-1)*n-1\/n*(n+1))=0.5*[(1\/(n-1)-1\/n)-(1\/n-1\/(n+1))]=0.5*(1\/(n-1)+1\/(n+1)-2\/n)1\/1*2*3+1\/2*3*4+1\/3*4*5+1\/4*5*6 =1\/2(1+1\/3-2\/2+1\/2+1\/4-2\/3+1\/3+1\/5-2\/4+1\/4+1\/6-2\/5)=1\/2...
求数列1\/1 ,1\/2,2\/2,1\/2,1\/3,2\/3,3\/3,2\/3,1\/3,1\/4,2\/4,3\/4,4\/4,3\/...
解答:分母为n的为1\/n, 2\/n,...(n-1)\/n, n\/n, (n-1)\/n,...,1\/n, 共有2n-1项 和为 [1+2+3+...+n+(n-1)+...+3+2+1]\/n=[n+(1+n-1)*(n-1)\/2 *2]\/n=n+n(n-1)=n²\/n=n ∵ 1+3+5+...+(2n-1)=(1+2n-1)*n\/2=n²∴ n=17...
...1\/1,1\/2 ,2\/2 ,1\/3 ,2\/3 , 3\/3,1\/4 ,……它的前2013个数的和是多 ...
1+2+3+...+n=n(n+1)\/2 n=63时,63*64\/2=2016 所以前2013个数的和为63-61\/63-62\/63-63\/63=62-41\/21。解题思路:观察给出的数列知道,分母是1的分数有1个,分母是2的分数有2个,分母是3的分数有3个…分母是n的分数有n个,由此知道根据等差数列前n项的和n(n+1)÷2。
求1\/1×2,1\/2×3,1\/3×4,1\/4×5,1\/5×6等等的通项公式
1\/1×2,1\/2×3,1\/3×4,1\/4×5,1\/5×6等等的通项公式为:an=1\/n(n+1)