如何进行数形结合教学

如题所述

数学概念作为小学数学教学中最为基本的知识,是小学数学知识结构的重要组成部分。学生只有掌握了数学概念,才可了解进而掌握数学知识。数形结合思想就是指在教学过程中,借助于直观形象的模型和集合图形来理解抽象的数学概念、规律及数量关系。小学生大多处在直观的认识阶段,很难理解抽象的概念。只有把抽象的数学概念与形象生动的图形结合起来,丰富小学生的感性认知途径,就可以帮助学生轻易理解数学概念的真正内容。本文结合笔者多年教学实践,谈谈数形结合思想在小学数学概念教学中的运用。
  1、数形结合思想的内涵
  “数”和“形”是数学教学过程中两个最为重要的部分,也是数学教学中经常研究的对象。在数学教学过程中,将“数”与“形”结合起来,借用直观形象的“形”来理解抽象难懂的“数”,运用细致的“数”来解释“形”的特征。将两者有机的组合在一起,相互配合。使得抽象难懂的概念与直观易懂的图形统一起来,从而轻松的解决数学问题。
  2、数形结合思想在小学数学概念教学中的运用
  2.1 建立模型,引入概念
  考虑到小学生的理解能力有限,在引入数学概念时必须考虑到学生对于概念的理解和掌握。在引入概念时,需要先建立直观的模型,让学生了解其表象,进入深入了解概念的内涵。对于模型表象的建立,是学生通过对感知材料进行分析,以此为基础而产生的印象。在小学数学教学中引入概念时,图形演示是建立模型的最常用也是最有用的方法。小学生尚处在简单的用形象思维考虑问题的阶段,在对于抽象的数学概念理解时,需要借助于丰富而形象的感性材料。在数学概念教学过程中,需要充分展现抽象的概念与形象的图形之间的相似之处,用最具有表现力的图形将难懂概念的本质演示出来。通过数形结合,学生将对所学的数学概念轻松掌握,并记忆深刻。
  在倍数的教学过程中,学生就很难理解倍数的概念。如何将倍数的概念最为简单明了的教授给学生,使他们能完全掌握呢?图形演示绝对是最为简单而有效的方法。教学时可将2个三角形看成一份,在下面在摆出4个正方形,分成两份。教授学生们观察三角形有1个2,正方形中有2个2,以2个为一份,就可以用数学语言表达:正方形的个数是三角形的2倍。在这简单的图形演示中,学生从最简单的“个数”“份数”,再引出“倍数”,过渡自然,不会显得很突兀和难以理解,从而轻松掌握“倍数”概念的本质。
  在利用直观的图形建立模型以助理解时需注意分寸,不要为增强图形对学生的刺激效果,而在图形演示上下太多功夫,导致学生的注意力集中到图形上去,失去理解概念的兴致。图形演示只是手段,是为了让学生直观的感受概念的本质,更好的理解数学概念的本质,其本身需简洁明了。
  2.2 步步递进,分析形成
  学生对数学概念的认识形成都有一个过程,在教学时仅借助一个图形是不够的,需在图形的基础上提出逐步深入的问题,诱导学生进行更深层次的思考,让学生亲自经历从对概念的直观感知到深刻理解的过程。学生不仅要能理解概念,还要能运用。故在引入概念时,需对学生理解的图形表象进一步递进,分析概念的形成过程,增强问题的形象性,拓展问题的深度,以启发学生更深层次的思考。在教学中学生需回忆概念引入的过程,观察和分析抽象概念如何变得形象,从而形成对新概念的掌握。
  在概念抽象且难以理解时,教师可在教学过程中借助于形象的物体设问,引导学生观察分析。例如在对于“体积”概念的教学时,教师可先引导学生观察橡皮与粉笔盒,问哪个物体更大,让学生初步感知“体积”的概念。然后可在烧杯内盛水,并放入小石块,让学生观察烧杯内水位的变化,并询问:水位为什么会上升?上升了多少?学生可以从水位上升中明白物体所占的空间体积大小就是“体积”。水位上升的多少就是小石块在水中占有的体积。通过深入讨论,学生就能轻易到“体积”就是物体所占有的空间体积大小。学生不仅因趣味实验而理解了“体积”的概念,还对次产生深刻的印象,也可以在以后更熟练的应用此概念。
  在进行实物建立概念模型,设置情境时,教师需特别注意层层递进,注意概念与图形的有机结合。在教学过程中,还需要用问题去诱导学生,启发学生,让学生在观察中发现问题,进而分析并解决问题。教师需要在学生形成对概念的表象认识时,引导学生观察分析概念的本质属性,使得学生在整个概念学习过程中能步步递进,了解整个过程的形成情况,完成对概念的理解过程。
  2.3 动手作图,理解本质
  小学生难以运用生活经验将实际遇到的问题转移在数学问题上,从而形成对数学概念的理解。所以在平时教学过程中,教师需根据实际教学情况,引导学生利用工具动手作图,以帮助理解概念的本质。通过作图观察,学生可建立属于自己的概念表象,拓展学生的空间观念,提高空间思维能力。从而培养学生的抽象思考、分析概括等能力。
  在三角形的教学中,学生就很难理
温馨提示:内容为网友见解,仅供参考
第1个回答  2021-03-31

小学数学的数形结合思想方法
第一,以形助数——借助形的生动和直观来阐明数与数之间的联系。如“斐波那契问题”也就是常说的兔子数列。第二,以数助形——借助数的简洁性和概括性来提炼事物(图形)的本质。在教学中将“形象”放在支撑的地位,通过“数”来描述、诠释“形”的特征,使数学达到深化、严谨的效果。如在六年级教...

数形结合数学思想方法
数形结合是数学教学中一种重要的思想方法。在小学生的数学学习过程中,从直观、形象的图形开始,逐步过渡到抽象逻辑思维。一年级学生学习数学,首先从具体的物体开始认识数字,通过具体形象的事物或图形逐步抽象出数、算理等概念。例如,低年级学习认数、加减法、乘除法,中年级学习分数的初步认识,高年级学...

数形结合数学思想方法
数形结合,让抽象概念化为直观图形,帮助学生理解数量关系,提高教学效率。在数学学习中,借助简单的图形、符号和文字示意图,促进学生形象思维与抽象思维协调发展,揭示数量关系的本质,沟通数学知识之间的联系。这种方法是小学数学教材的重要特点,也是解决问题的常用策略。形象思维向抽象思维的过渡,往往需要直...

如何培养学生数形结合法的思想
在数学教学中教师要有意识地利用数形之间的关系,帮助学生逐步树立起数形相结合的思想方法,培养主动运用数形结合的方法去解题的意识,长期的锻炼可以使得学生将数形结合思想内化为自己的认知结构中去,成为运用自如的思想观念和思维工具,

在课堂教学中如何渗透数形结合思想
2 借形理解,在概念教学中,加强实验操作,渗透数形结合思想方法,使学生直观地理解概念数学概念是知识教学中的重要组成部分,在概念教学中,仅阐明其实际意义是不够的,还应从事物的整体、本质和内在联系出发,对概念进行进行全面分析,突出其本质属性,但它的抽象性、枯燥性使得教学效果不尽如人意,学生...

如何在小学数学课堂教学中渗透数学思想方法
1. **数形结合**:这种方法通过将数与形的对应关系和相互转化应用于问题解决。例如,在教授100以内数的认识时,教师可以使用百鸟图来引导学生数数,有效实践数的组成,并沟通基数与序数。2. **数形结合思想的深化**:在教学过程中,教师应结合具体内容,引导学生见数想形,因形思数,培养学生数形...

小学数学教材哪些内容利用数形结合?
数形结合的表现形式 第一,以形助数——借助形的生动和直观来阐明数与数之间的联系。如“斐波那契问题”也就是常说的兔子数列。第二,以数助形——借助数的简洁性和概括性来提炼事物(图形)的本质。在教学中将“形象”放在支撑的地位,通过“数”来描述、诠释“形”的特征,使数学达到深化、严谨的...

数形结合数学思想方法
2数形结合数学思想方法 用图形的直观,帮助学生理解数量关系,提高教学效率 用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。“数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和 抽象思维 的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最...

如何将数形结合思想渗透于课堂中
数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。教师要从数学发展的全局着眼,从具体的教学过程着手,有目的、有计划地进行渗透数...

数形结合
数形结合的重要性在于培养学生的空间想象力和逻辑思维能力。通过数形结合,学生可以更好地理解和掌握数学知识,提高解题能力。同时,数形结合还可以帮助学生更好地理解其他学科中的数学问题,如物理、化学、计算机科学等。因此,数形结合是一种非常重要的教学方法和教学思想,对于提高学生的数学素养和能力具有...

相似回答