基于FFT的算法优化 要C语言完整程序(利用旋转因子的性质),有的请留言,答谢!!!(有核心代码,望指教

如题所述

实现(C描述)

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

//#include "complex.h"

// --------------------------------------------------------------------------

#define N 8 //64

#define M 3 //6 //2^m=N

#define PI 3.1415926

// --------------------------------------------------------------------------

float twiddle[N/2] = {1.0, 0.707, 0.0, -0.707};

float x_r[N] = {1, 1, 1, 1, 0, 0, 0, 0};

float x_i[N]; //N=8

/*

float twiddle[N/2] = {1, 0.9951, 0.9808, 0.9570, 0.9239, 0.8820, 0.8317, 0.7733,

0.7075, 0.6349, 0.5561, 0.4721, 0.3835, 0.2912, 0.1961, 0.0991,

0.0000,-0.0991,-0.1961,-0.2912,-0.3835,-0.4721,-0.5561,-0.6349,

-0.7075,-0.7733, 0.8317,-0.8820,-0.9239,-0.9570,-0.9808,-0.9951}; //N=64

float x_r[N]={1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,};

float x_i[N];

*/

FILE *fp;

// ----------------------------------- func -----------------------------------

/**

* 初始化输出虚部

*/

static void fft_init( void )

{

int i;

for(i=0; i<N; i++) x_i[i] = 0.0;

}

/**

* 反转算法.将时域信号重新排序.

* 这个算法有改进的空间

*/

static void bitrev( void )

{

int p=1, q, i;

int bit_rev[ N ]; //

float xx_r[ N ]; //

bit_rev[ 0 ] = 0;

while( p < N )

{

for(q=0; q<p; q++)

{

bit_rev[ q ] = bit_rev[ q ] * 2;

bit_rev[ q + p ] = bit_rev[ q ] + 1;

}

p *= 2;

}

for(i=0; i<N; i++) xx_r[ i ] = x_r[ i ];

for(i=0; i<N; i++) x_r[i] = xx_r[ bit_rev[i] ];

}

/* ------------ add by sshc625 ------------ */

static void bitrev2( void )

{

return ;

}

/* */

void display( void )

{

printf("\n\n");

int i;

for(i=0; i<N; i++)

printf("%f\t%f\n", x_r[i], x_i[i]);

}

/**

*

*/

void fft1( void )

{ fp = fopen("log1.txt", "a+");

int L, i, b, j, p, k, tx1, tx2;

float TR, TI, temp; // 临时变量

float tw1, tw2;

/* 深M. 对层进行循环. L为当前层, 总层数为M. */

for(L=1; L<=M; L++)

{

fprintf(fp,"----------Layer=%d----------\n", L);

/* b的意义非常重大,b表示当前层的颗粒具有的输入样本点数 */

b = 1;

i = L - 1;

while(i > 0)

{

b *= 2;

i--;

}

// -------------- 是否外层对颗粒循环, 内层对样本点循环逻辑性更强一些呢! --------------

/*

* outter对参与DFT的样本点进行循环

* L=1, 循环了1次(4个颗粒, 每个颗粒2个样本点)

* L=2, 循环了2次(2个颗粒, 每个颗粒4个样本点)

* L=3, 循环了4次(1个颗粒, 每个颗粒8个样本点)

*/

for(j=0; j<b; j++)

{

/* 求旋转因子tw1 */

p = 1;

i = M - L; // M是为总层数, L为当前层.

while(i > 0)

{

p = p*2;

i--;

}

p = p * j;

tx1 = p % N;

tx2 = tx1 + 3*N/4;

tx2 = tx2 % N;

// tw1是cos部分, 实部; tw2是sin部分, 虚数部分.

tw1 = ( tx1>=N/2)? -twiddle[tx1-N/2] : twiddle[ tx1 ];

tw2 = ( tx2>=N/2)? -twiddle[tx2-(N/2)] : twiddle[tx2];

/*

* inner对颗粒进行循环

* L=1, 循环了4次(4个颗粒, 每个颗粒2个输入)

* L=2, 循环了2次(2个颗粒, 每个颗粒4个输入)

* L=3, 循环了1次(1个颗粒, 每个颗粒8个输入)

*/

for(k=j; k<N; k=k+2*b)

{

TR = x_r[k]; // TR就是A, x_r[k+b]就是B.

TI = x_i[k];

temp = x_r[k+b];

/*

* 如果复习一下 (a+j*b)(c+j*d)两个复数相乘后的实部虚部分别是什么

* 就能理解为什么会如下运算了, 只有在L=1时候输入才是实数, 之后层的

* 输入都是复数, 为了让所有的层的输入都是复数, 我们只好让L=1时候的

* 输入虚部为0

* x_i[k+b]*tw2是两个虚数相乘

*/

fprintf(fp, "tw1=%f, tw2=%f\n", tw1, tw2);

x_r[k] = TR + x_r[k+b]*tw1 + x_i[k+b]*tw2;

x_i[k] = TI - x_r[k+b]*tw2 + x_i[k+b]*tw1;

x_r[k+b] = TR - x_r[k+b]*tw1 - x_i[k+b]*tw2;

x_i[k+b] = TI + temp*tw2 - x_i[k+b]*tw1;

fprintf(fp, "k=%d, x_r[k]=%f, x_i[k]=%f\n", k, x_r[k], x_i[k]);

fprintf(fp, "k=%d, x_r[k]=%f, x_i[k]=%f\n", k+b, x_r[k+b], x_i[k+b]);

} //

} //

} //

}

/**

* ------------ add by sshc625 ------------

* 该实现的流程为

* for( Layer )

* for( Granule )

* for( Sample )

*

*

*

*

*/

void fft2( void )

{ fp = fopen("log2.txt", "a+");

int cur_layer, gr_num, i, k, p;

float tmp_real, tmp_imag, temp; // 临时变量, 记录实部

float tw1, tw2;// 旋转因子,tw1为旋转因子的实部cos部分, tw2为旋转因子的虚部sin部分.

int step; // 步进

int sample_num; // 颗粒的样本总数(各层不同, 因为各层颗粒的输入不同)

/* 对层循环 */

for(cur_layer=1; cur_layer<=M; cur_layer++)

{

/* 求当前层拥有多少个颗粒(gr_num) */

gr_num = 1;

i = M - cur_layer;

while(i > 0)

{

i--;

gr_num *= 2;

}

/* 每个颗粒的输入样本数N' */

sample_num = (int)pow(2, cur_layer);

/* 步进. 步进是N'/2 */

step = sample_num/2;

/* */

k = 0;

/* 对颗粒进行循环 */

for(i=0; i<gr_num; i++)

{

/*

* 对样本点进行循环, 注意上限和步进

*/

for(p=0; p<sample_num/2; p++)

{

// 旋转因子, 需要优化...

tw1 = cos(2*PI*p/pow(2, cur_layer));

tw2 = -sin(2*PI*p/pow(2, cur_layer));

tmp_real = x_r[k+p];

tmp_imag = x_i[k+p];

temp = x_r[k+p+step];

/*(tw1+jtw2)(x_r[k]+jx_i[k])

*

* real : tw1*x_r[k] - tw2*x_i[k]

* imag : tw1*x_i[k] + tw2*x_r[k]

* 我想不抽象出一个

* typedef struct {

* double real; // 实部

* double imag; // 虚部

* } complex; 以及针对complex的操作

* 来简化复数运算是否是因为效率上的考虑!

*/

/* 蝶形算法 */

x_r[k+p] = tmp_real + ( tw1*x_r[k+p+step] - tw2*x_i[k+p+step] );

x_i[k+p] = tmp_imag + ( tw2*x_r[k+p+step] + tw1*x_i[k+p+step] );

/* X[k] = A(k)+WB(k)

* X[k+N/2] = A(k)-WB(k) 的性质可以优化这里*/

// 旋转因子, 需要优化...

tw1 = cos(2*PI*(p+step)/pow(2, cur_layer));

tw2 = -sin(2*PI*(p+step)/pow(2, cur_layer));

x_r[k+p+step] = tmp_real + ( tw1*temp - tw2*x_i[k+p+step] );

x_i[k+p+step] = tmp_imag + ( tw2*temp + tw1*x_i[k+p+step] );

printf("k=%d, x_r[k]=%f, x_i[k]=%f\n", k+p, x_r[k+p], x_i[k+p]);

printf("k=%d, x_r[k]=%f, x_i[k]=%f\n", k+p+step, x_r[k+p+step], x_i[k+p+step]);

}

/* 开跳!:) */

k += 2*step;

}

}

}

/*

* 后记:

* 究竟是颗粒在外层循环还是样本输入在外层, 好象也差不多, 复杂度完全一样.

* 但以我资质愚钝花费了不少时间才弄明白这数十行代码.

* 从中我发现一个于我非常有帮助的教训, 很久以前我写过一部分算法, 其中绝大多数都是递归.

* 将数据量减少, 减少再减少, 用归纳的方式来找出数据量加大代码的规律

* 比如FFT

* 1. 先写死LayerI的代码; 然后再把LayerI的输出作为LayerII的输入, 又写死代码; ......

* 大约3层就可以统计出规律来. 这和递归也是一样, 先写死一两层, 自然就出来了!

* 2. 有的功能可以写伪代码, 不急于求出结果, 降低复杂性, 把逻辑结果定出来后再添加.

* 比如旋转因子就可以写死, 就写1.0. 流程出来后再写旋转因子.

* 寥寥数语, 我可真是流了不少汗! Happy!

*/

void dft( void )

{

int i, n, k, tx1, tx2;

float tw1,tw2;

float xx_r[N],xx_i[N];

/*

* clear any data in Real and Imaginary result arrays prior to DFT

*/

for(k=0; k<=N-1; k++)

xx_r[k] = xx_i[k] = x_i[k] = 0.0;

// caculate the DFT

for(k=0; k<=(N-1); k++)

{

for(n=0; n<=(N-1); n++)

{

tx1 = (n*k);

tx2 = tx1+(3*N)/4;

tx1 = tx1%(N);

tx2 = tx2%(N);

if(tx1 >= (N/2))

tw1 = -twiddle[tx1-(N/2)];

else

tw1 = twiddle[tx1];

if(tx2 >= (N/2))

tw2 = -twiddle[tx2-(N/2)];

else

tw2 = twiddle[tx2];

xx_r[k] = xx_r[k]+x_r[n]*tw1;

xx_i[k] = xx_i[k]+x_r[n]*tw2;

}

xx_i[k] = -xx_i[k];

}

// display

for(i=0; i<N; i++)

printf("%f\t%f\n", xx_r[i], xx_i[i]);

}

// ---------------------------------------------------------------------------

int main( void )

{

fft_init( );

bitrev( );

// bitrev2( );

//fft1( );

fft2( );

display( );

system( "pause" );

// dft();

return 1;

}

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/sshcx/archive/2007/06/14/1651616.aspx
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-05-25

快速傅里叶变换 要用C++ 才行吧 你可以用MATLAB来实现更方便点啊

此FFT 是用VC6.0编写,由FFT.CPP;STDAFX.H和STDAFX.CPP三个文件组成,编译成功。程序可以用文件输入和输出为文件。文件格式为TXT文件。测试结果如下:

输入文件:8.TXT 或手动输入

8 //N

1

2

3

4

5

6

7

8

输出结果为:或保存为TXT文件。(8OUT.TXT)

8

(36,0)

(-4,9.65685)

(-4,4)

(-4,1.65685)

(-4,0)

(-4,-1.65685)

(-4,-4)

(-4,-9.65685)

下面为FFT.CPP文件:

// FFT.cpp : 定义控制台应用程序的入口点。

#include "stdafx.h"

#include <iostream>

#include <complex>

#include <bitset>

#include <vector>

#include <conio.h>

#include <string>

#include <fstream>

using namespace std;

bool inputData(unsigned long &, vector<complex<double> >&); //手工输入数据

void FFT(unsigned long &, vector<complex<double> >&); //FFT变换

void display(unsigned long &, vector<complex<double> >&); //显示结果

bool readDataFromFile(unsigned long &, vector<complex<double> >&); //从文件中读取数据

bool saveResultToFile(unsigned long &, vector<complex<double> >&); //保存结果至文件中

const double PI = 3.1415926;

int _tmain(int argc, _TCHAR* argv[])

{

vector<complex<double> > vecList; //有限长序列

unsigned long ulN = 0; //N

char chChoose = ' '; //功能选择

//功能循环

while(chChoose != 'Q' && chChoose != 'q')

{

//显示选择项

cout << "\nPlease chose a function" << endl;

cout << "\t1.Input data manually, press 'M':" << endl;

cout << "\t2.Read data from file, press 'F':" << endl;

cout << "\t3.Quit, press 'Q'" << endl;

cout << "Please chose:";

//输入选择

chChoose = getch();

//判断

switch(chChoose)

{

case 'm': //手工输入数据

case 'M':

if(inputData(ulN, vecList))

{

FFT(ulN, vecList);

display(ulN, vecList);

saveResultToFile(ulN, vecList);

}

break;

case 'f': //从文档读取数据

case 'F':

if(readDataFromFile(ulN, vecList))

{

FFT(ulN, vecList);

display(ulN, vecList);

saveResultToFile(ulN, vecList);

}

break;

}

}

return 0;

}

bool Is2Power(unsigned long ul) //判断是否是2的整数次幂

{

if(ul < 2)

return false;

while( ul > 1 )

{

if( ul % 2 )

return false;

ul /= 2;

}

return true;

}

bool inputData(unsigned long & ulN, vector<complex<double> >& vecList)

{

//题目

cout<< "\n\n\n==============================Input Data===============================" << endl;

//输入N

cout<< "\nInput N:";

cin>>ulN;

if(!Is2Power(ulN)) //验证N的有效性

{

cout<< "N is invalid (N must like 2, 4, 8, .....), please retry." << endl;

return false;

}

//输入各元素

vecList.clear(); //清空原有序列

complex<double> c;

for(unsigned long i = 0; i < ulN; i++)

{

cout << "Input x(" << i << "):";

cin >> c;

vecList.push_back(c);

}

return true;

}

bool readDataFromFile(unsigned long & ulN, vector<complex<double> >& vecList) //从文件中读取数据

{

//题目

cout<< "\n\n\n===============Read Data From File==============" << endl;

//输入文件名

string strfilename;

cout << "Input filename:" ;

cin >> strfilename;

//打开文件

cout << "open file " << strfilename << "......." <<endl;

ifstream loadfile;

loadfile.open(strfilename.c_str());

if(!loadfile)

{

cout << "\tfailed" << endl;

return false;

}

else

{

cout << "\tsucceed" << endl;

}

vecList.clear();

//读取N

loadfile >> ulN;

if(!loadfile)

{

cout << "can't get N" << endl;

return false;

}

else

{

cout << "N = " << ulN << endl;

}

//读取元素

complex<double> c;

for(unsigned long i = 0; i < ulN; i++)

{

loadfile >> c;

if(!loadfile)

{

cout << "can't get enough infomation" << endl;

return false;

}

else

cout << "x(" << i << ") = " << c << endl;

vecList.push_back(c);

}

//关闭文件

loadfile.close();

return true;

}

bool saveResultToFile(unsigned long & ulN, vector<complex<double> >& vecList) //保存结果至文件中

{

//询问是否需要将结果保存至文件

char chChoose = ' ';

cout << "Do you want to save the result to file? (y/n):";

chChoose = _getch();

if(chChoose != 'y' && chChoose != 'Y')

{

return true;

}

//输入文件名

string strfilename;

cout << "\nInput file name:" ;

cin >> strfilename;

cout << "Save result to file " << strfilename << "......" << endl;

//打开文件

ofstream savefile(strfilename.c_str());

if(!savefile)

{

cout << "can't open file" << endl;

return false;

}

//写入N

savefile << ulN << endl;

//写入元素

for(vector<complex<double> >::iterator i = vecList.begin(); i < vecList.end(); i++)

{

savefile << *i << endl;

}

//写入完毕

cout << "save succeed." << endl;

//关闭文件

savefile.close();

return true;

}

void FFT(unsigned long & ulN, vector<complex<double> >& vecList)

{

//得到幂数

unsigned long ulPower = 0; //幂数

unsigned long ulN1 = ulN - 1;

while(ulN1 > 0)

{

ulPower++;

ulN1 /= 2;

}

//反序

bitset<sizeof(unsigned long) * 8> bsIndex; //二进制容器

unsigned long ulIndex; //反转后的序号

unsigned long ulK;

for(unsigned long p = 0; p < ulN; p++)

{

ulIndex = 0;

ulK = 1;

bsIndex = bitset<sizeof(unsigned long) * 8>(p);

for(unsigned long j = 0; j < ulPower; j++)

{

ulIndex += bsIndex.test(ulPower - j - 1) ? ulK : 0;

ulK *= 2;

}

if(ulIndex > p)

{

complex<double> c = vecList[p];

vecList[p] = vecList[ulIndex];

vecList[ulIndex] = c;

}

}

//计算旋转因子

vector<complex<double> > vecW;

for(unsigned long i = 0; i < ulN / 2; i++)

{

vecW.push_back(complex<double>(cos(2 * i * PI / ulN) , -1 * sin(2 * i * PI / ulN)));

}

for(unsigned long m = 0; m < ulN / 2; m++)

{

cout<< "\nvW[" << m << "]=" << vecW[m];

}

//计算FFT

unsigned long ulGroupLength = 1; //段的长度

unsigned long ulHalfLength = 0; //段长度的一半

unsigned long ulGroupCount = 0; //段的数量

complex<double> cw; //WH(x)

complex<double> c1; //G(x) + WH(x)

complex<double> c2; //G(x) - WH(x)

for(unsigned long b = 0; b < ulPower; b++)

{

ulHalfLength = ulGroupLength;

ulGroupLength *= 2;

for(unsigned long j = 0; j < ulN; j += ulGroupLength)

{

for(unsigned long k = 0; k < ulHalfLength; k++)

{

cw = vecW[k * ulN / ulGroupLength] * vecList[j + k + ulHalfLength];

c1 = vecList[j + k] + cw;

c2 = vecList[j + k] - cw;

vecList[j + k] = c1;

vecList[j + k + ulHalfLength] = c2;

}

}

}

}

void display(unsigned long & ulN, vector<complex<double> >& vecList)

{

cout << "\n\n===========================Display The Result=========================" << endl;

for(unsigned long d = 0; d < ulN;d++)

{

cout << "X(" << d << ")\t\t\t = " << vecList[d] << endl;

}

}

下面为STDAFX.H文件:

// stdafx.h : 标准系统包含文件的包含文件,

// 或是常用但不常更改的项目特定的包含文件

#pragma once

#include <iostream>

#include <tchar.h>

// TODO: 在此处引用程序要求的附加头文件

下面为STDAFX.CPP文件:

// stdafx.cpp : 只包括标准包含文件的源文件

// FFT.pch 将成为预编译头

// stdafx.obj 将包含预编译类型信息

#include "stdafx.h"

// TODO: 在 STDAFX.H 中

//引用任何所需的附加头文件,而不是在此文件中引用追问

求帮助,事后必有回报,重谢!!!

基于FFT的算法优化 要C语言完整程序(利用旋转因子的性质),有的请留言...
此FFT 是用VC6.0编写,由FFT.CPP;STDAFX.H和STDAFX.CPP三个文件组成,编译成功。程序可以用文件输入和输出为文件。文件格式为TXT文件。测试结果如下:输入文件:8.TXT 或手动输入8 \/\/N1 2 3 4 5 6 7 8 输出结果为:或保存为TXT文件。(8OUT.TXT)8(36,0)(-4,9.65685)(-4,4)(-4,1.65685)(-4,0)(-...

π的计算方法有哪些?
第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10\/71))<π<(3+(1\/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后...

π的计算方法有哪些?
第一个快速算法由英国数学家梅钦(John Machin)提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:其中arctan x可由泰勒级数算出。类似方法称为“梅钦类公式”。斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了梅...

相似回答