二次函数解析式的三种求法

如题所述

二次函数解析式的三种求法:

1、用一般式确定二次函数的解析式

一般式也就是三点式,步骤跟求解一次函数的步骤基本一样,首先就是先设出二次函数的解析式:y=ax+bx+c(a≠0),然后通过带入图像上已知的三个点,得到关于a,b,c的三元一次方程组,最后写出函数的解析式。

2、用顶点式确定二次函数的解析

刚才我们通过已知图像上的三点确定了二次函数的解析式,如果只知道图像上任意两点是否可以确定解析式?如果知道图像的顶点和图像上另一点,能否确定解析式呢?

当给出的点的坐标有顶点时,可设顶点式y=a(x-h)2+k,由顶点坐标可直接得出h,k的值,再将另一点的坐标代入即可求出a的值,从而得到原函数的解析式。

3、用交点式确定二次函数的解析式

利用交点式确定二次函数的解析式,焦点就是函数图像与x轴的焦点,首先设出函数解析式为y=a(x-x1)(x-x2),这里的x1,x2指的就是图像与x轴焦点的横坐标,然后在带入已知点求出a的值,即可求出函数解析式。

温馨提示:内容为网友见解,仅供参考
无其他回答

二次函数的解析式有哪几种表示形式?
求二次函数解析式有三种方法:一般式、双根式、顶点式。1.如果已知抛物线上三点的坐标,一般用一般式。一般式设解析式形式:y=ax²+bx+c(a,b,c为常数,a≠0);2.已知抛物线与轴的两个交点的横坐标,一般用双根式(交点式)。双根式设解析式形式:y=(x-x₁)(x-x₂)(a...

求二次函数解析式的方法
二次函数的解析式有三种基本形式:1、一般式:y=ax2+bx+c(a≠0)。2、顶点式:y=a(x-h)2+k(a≠0),其中点(h,k)为顶点,对称轴为x=h。3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。4.对称点式: y=a(x-x1)(x-x2)+m(a≠0)求二...

二次函数解析式的求法过程
二次函数解析式的求法过程一般有三种方法,分别为一般式,双根(交点)式,顶点式。具体如下:1、一般式方法:一般式设解解析式形式:y=ax^2+bx+c(a,b,c均为常数,且a≠0);什么时候求解要用一般式方法呢?为什么?由观察可知,要想求出二次函数解析式,必须要求出具体的a,b,c方可,由于a,b,c为三...

求二次函数解析式的方法
二次函数解析式有三种方法有一般式、双根式、顶点式。1、一般式 一般式设解析式形式:y=ax2+bx+c(a,b,c为常数,a#0)。2、双根式(交点式)双根式设解析式形式:y=(x-×1)(x-×2)(a,b,c为常数,a#0)。3、顶点式 顶点式设解析式的形式:y=a(x-h)^2+k(a=0)。二次函数 在...

二次函数解析式的求法
1、求二次函数解析式有三种方法:一般式、双根式、顶点式。二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数较高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。2、二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是...

怎样求二次函数解析式
1、条件为已知抛物线过三个已知点,用一般式:Y=aX^2+bX+c , 分别代入成为一个三元一次方程组,解得a、bc的值,从而得到解析式。2、已知顶点坐标及另外一点,用顶点式:Y=a(X-h)^2+K , 点坐标代入后,成为关于a的一元一次方程,得a的值,从而得到 解析式。3、已知抛物线过三个点中,...

求二次函数的解析式
求二次函数的解析式的求法如下:一、一般式 已知抛物线上的三个点的坐标,可选用一般式求解析式,代入坐标列三元一次方程,求解即可。若解析式中只有两个未知系数,只需要代两个点,解二元一次方程即可。二、交点式 已知抛物线与x 轴两个交点的横坐标分别为 x1、X2,可选用交点式,设解析式为 y-...

二次函数解析式怎么算
我们结合待定系数法和三种二次函数基本形式来确定函数关系式,一定要根据不同条件,设出恰当的解析式,具体如下:第一步:若给出抛物线上任意三点,通常可设一般式y=ax2+bx+c(a≠0)来求解。第二步:若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式y=a(x-m)2+k(a≠0)来求解。...

怎样用二次函数求解析式?
二次函数求解析式的三种方法如下:方法一:运用一般式y=ax^2+bx+c,把抛物线经过的三点坐标代入,得关于待定系数a、b、c的方程组,再解之即可。抛物线表达式中的一般式y=ax^2+bx+c又称三点式,如果已知抛物线经过三点的坐标求解析式时,一般采用这种方法。这种解法具有思路清晰,方法简便之...

求二次函数解析式的方法有几个
主要是三种方法。一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。我们称y=ax2+bx+c(a≠0)为一般式(三点式)。说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。所以将已知三点的坐标分别...

相似回答
大家正在搜