保证DNA复制准确无误的关键步骤是什么?

如题所述

第1个回答  2011-06-14
DNA生物合成具有保真性。要使DNA准确复制必须要有严格的碱基配对,DNA聚合酶在复制中的正确选择,对复制过程中出现的错误及时校正
(我们生化中讲的)
如果谈及DNA复制的过程分为DNA复制的引发,DNA链的延伸,DNA复制的终止
DNA双螺旋的解旋   DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程   (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白)   ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。   (2)DNA解链酶(DNA helicase)   DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5’—〉3’方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3’—〉5’方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。   (3)DNA解链过程   DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5’—3’持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。   冈崎片段与半不连续复制   因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5’—〉3’方向,另一条是3’—〉5’方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5’—〉3’方向,不是3’—〉5’方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。   端粒和端粒酶   1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。   弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5’端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶I催化合成DNA时,需要自由3’—OH作为引物,最后余下子链的5’无法填补,于是染色体就短了一点。   在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后 ,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。   端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。   至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)
编辑本段DNA复制所需的蛋白质和酶
  酶和蛋白质 作用
拓扑异构酶 帮助解开复制叉前后的超螺旋结构
DNA解旋酶 揭开螺旋
Rep蛋白  帮助揭开双螺旋结构
引物合成酶  合成RNA引物
单链结合蛋白 稳定单连区
DNA聚合酶Ⅰ  消除引物,填满裂缝
DNA聚合酶Ⅲ  合成DNA
DNA连接酶  连接DNA末端

编辑本段DNA链的延伸
  DNA新生链的合成由DNA聚合酶Ⅲ所催化,然而,DNA必须由螺旋酶在复制叉处边移动边解开双链。这样就产生了一种拓扑学上的问题:由于DNA的解链,在DNA双链区势必产生正超螺旋,在环状DNA中更为明显,当达到一定程度后就会造成复制叉难再继续前进,从而终    DNA复制
止DNA复制。但是,在细胞内DNA复制不会因出现拓扑学问题而停止。有两种机制可以防止这种现象发生:[1]DNA在生物细胞中本身就是超螺旋,当DNA解链而产生正超螺旋时,可以被原来存在的负超螺旋所中和;[2]DNA拓扑异构酶Ⅰ要以打开一条链,使正超螺旋状态转变成松弛状态,而DNA拓扑异构酶Ⅱ(旋转酶)可以在DNA解链前方不停地继续将负超螺旋引入双链DNA。这两种机制保证了无论是环状DNA还是开环DNA的复制顺利的解链,再由DNA聚合酶Ⅲ合成新的DNA链。前已述及DNA生长链的延伸主要由DNA聚合酶催化,该酶是由7种蛋白质(多肽)组成的聚合体,称为全酶。全酶中所有亚基对完成DNA复制都是必需的。α亚基具有聚合功能和5'→3'外切酶活性,ε亚基具有3'→5'外切酶活性。另外,全酶中还有ATP分子它是DNA聚合酶Ⅲ催化第一个脱氧核糖核苷酸连接在RNA引物上所必需的,其他亚基的功能尚不清楚。   在DNA复制叉处要能由两套DNA聚合酶Ⅲ在同一时间分别进行复制DNA前导链和滞后链。如果滞后链模板环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ,然后再折向与未解链的双链DNA在同一方向上,则滞后链的合成可以和前导链的合成在同一方向上进行。   这样,当DNA聚合酶Ⅲ沿着滞后链模板移动时,由特异的引物酶催化合成的RNA引物即可以由DNA聚合酶Ⅲ所延伸。当合成的DNA链到达前一次合成的冈崎片段的位置时,滞后链模板及刚合成的冈崎片断便从DNA聚合酶Ⅲ上释放出来。这时,由于复制叉继续向前运动,便产生了又一段单链的滞后链模板,它重新环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ开始合成新的滞后链冈崎片段。通过这样的机制,前导链的合成不会超过滞后链太多(最后只有一个冈崎片段的长度)。而且,这样引发体在DNA链上和DNA聚合酶Ⅲ以同一速度移动。   按上述DNA复制的机制,在复制叉附近,形成了以两套DNA聚合酶Ⅲ全酶分子、引发体和螺旋构成的类似核糖体大小的复合体,称为DNA复制体(replisome)。复制体在DNA前导链模板和滞后链模板上移动时便合成了连续的DNA前导链和由许多冈崎片段组成的滞后链。在DNA合成延伸过程中主要是DNA聚合酶Ⅲ的作用。当冈崎片段形成后,DNA聚合酶Ⅰ通过其5'→3'外切酶活性切除冈崎片段上的RNA引物,同时,利用后一个冈崎片段作为引物由5'→3'合成DNA。最后两个冈崎片段由DNA连接酶将其接起来,形成完整的DNA滞后链。
编辑本段终止
  过去认为,DNA一旦复制开始,就会将该DNA分子全部复制完毕,    DNA复制
才终止其DNA复制。但最近的实验表明,在DNA上也存在着复制终止位点,DNA复制将在复制终止位点处终止,并不一定等全部DNA合成完毕。但目前对复制终止位点的结构和功能了解甚少在DNA复制终止阶段令人困惑的一个问题是,线性DNA分子两端是如何完成其复制的?已知DNA复制都要有RNA引物参与。当RNA引物被切除后,中间所遗留的间隙由DNA聚合Ⅰ所填充。但是,在线性分子的两端以5'→3'为模板的滞后链的合成,其末端的RNA引物被切除后是无法被DNA聚合酶所填充的。   在研究T7DNA复制时,这个问题部分地得到了解决。T7DNA两端的DNA序列区有160bp长的序列完全相同。而且,在T7DNA复制时,产生的子代DNA分子不是一个单位T7DNA长度,而是许多单位长度的T7DNA首尾连接在一起。T7DNA两个子代DNA分子都会有一个3'端单链尾巴,两个子代DNA的3'端尾巴以互补结合形成两个单位T7DNA的线性连接。然后由DNA聚合酶Ⅰ填充和DNA连接酶连接后,继续复制便形成四个单位长度的T7DNA分子。这样复制下去,便可形成多个单位长度的T7DNA分子。这样的T7DNA分子可以被特异的内切酶切开,用DNA聚合酶填充与亲代DNA完全一样的双链T7DNA分子。   在研究痘病毒复制时,发现了线性DNA分子完成末端复制的第二种方式。痘病毒DNA在两端都形成发夹环状结构。 DNA复制
DNA复制时,在线性分子中间的一个复制起点开始,双向进行,将发夹环状结构变成双链环状DNA。然后,在发夹的中央将不同DNA链切开,使DNA分子变性,双链分开。这样,在每个分子两端形成一个单链尾端要以自我互补,形成完整的发夹结构,与亲代DNA分子一样。在真核生物染色体线性DNA分子复制时,尚不清楚末端的复制过程是怎样进行的。也可能像痘病毒那样形成发夹结构而进行复制。但最近的实验表明,真核生物染色体末端DNA复制是由一种特殊的酶将一个新的末端DNA序列加在刚刚完成复制的DNA末端。这种机制首先在四膜虫中发现。该生物细胞的线性DNA分子末端有30-70拷贝的5'TTGGGG3'序列,该细胞中存在一种酶可以将TTGGGG序列加在事先已存在的单键DNA末端的TTGGGG序列上。这样有较长的末端单链DNA,可以被引物酶重新引发或其他的酶蛋白引发而合成RNA引物,并由DNA聚合酶将其变成双链DNA。这样就可以避免其DNA随着复制的不断进行而逐渐变短。   在环状DNA的复制的末端终止阶段则不存在上述问题。环状DNA复制到最后,由DNA拓扑异构酶Ⅱ切开双链DNA,将两个DNA分子分开成为两个完整的与亲代DNA分子一样的子代DNA。   DNA复制的特点   1.半保留复制:DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制。DNA以半保留方式进行复制,是在1958年由M. Meselson 和 F. Stahl 所完成的实验所证明。   2.有一定的复制起始点:DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。   3.需要引物(primer):DNA聚合酶必须以一段具有3'端自由羟基(3'-OH)的RNA作为引物,才能开始聚合子代DNA链。RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。   4.双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制。   5.半不连续复制:由于DNA聚合酶只能以5'→3'方向聚合子代DNA链,因此两条亲代DNA链作为模板聚合子代DNA链时的方式是不同的。以3'→5'方向的亲代DNA链作模板的子代链在聚合时基本上是连续进行的,这一条链被称为领头链(leading strand)。而以5'→3'方向的亲代DNA链为模板的子代链在聚合时则是不连续的,这条链被称为随从链(lagging strand)。DNA在复制时,由随从链所形成的一些子代DNA短链称为冈崎片段(Okazaki fragment)。冈崎片段的大小,在原核生物中约为1000~2000个核苷酸,而在真核生物中约为100个核苷酸。

参考资料:百度文库,生物化学与分子生物学

本回答被网友采纳
第2个回答  2011-06-14
依据碱基互补配对原则,由DNA解旋酶(PCR不需要,高温就可以实现解旋)和DNA聚合酶催化的DNA双链半保留复制过程。
第3个回答  2011-06-22
游离的脱氧核苷酸与母链碱基进行互补配对
第4个回答  2011-06-14
你可以参考PCR体系试剂的作用,缓冲液,dNTP,酶,模板,引物,水,解旋,退火,延伸的温度,这些都是必不可少的。
第5个回答  2011-06-14
子链合成过程中的碱基互补配对。

保证DNA复制准确无误的关键步骤是什么?
DNA双螺旋的解旋 DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程 (1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白) ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结...

保证准确无误地进行DNA复制的关键步骤是?
1、DNA解旋的时候很重要,不能有差错,一旦解旋出错,就会出现错误。2、碱基互补配对原则,这是DNA复制的最基本原则。3、DNA合成的时候是一个个的片段的整合,这时候也是一个关键的时期。

引物的作用?
DNA聚合酶在DNA复制过程中扮演着关键角色,然而,它并非直接在DNA单链上进行工作。一个重要的辅助步骤是利用引物。引物是一种小段的寡核苷酸,它像一个引导者,与模板DNA的一段互补配对。当DNA聚合酶开始复制时,它并不会从头开始,而是依赖于引物已经形成的初始键合点。这个引物就像一个起跑线,让聚合...

什么是引物
当DNA进行复制过程的初始阶段,一个关键步骤是通过模板DNA合成一小段RNA,这个RNA的作用非凡,它作为新DNA链的启动点,其3'端带有游离的羟基。这个特殊的RNA片段被称为引物。在DNA复制完成时,引物会被识别并切除,由新的DNA链完全替代,确保了复制的准确进行。引物就像是DNA复制过程中的临时接力棒,它...

dna复制的过程及特点
DNA复制是一个复杂且精确的过程,主要发生在细胞分裂前的S期。这一过程大致分为以下几个步骤:1. 双链解旋:DNA在解旋酶的作用下,使双链DNA解开,形成单链,为复制提供模板。2. 合成引物:在引物酶的作用下,合成RNA引物,作为DNA复制的起始点。3. 配对与合成:在DNA聚合酶的作用下,以解开的单链...

利兰·哈特韦尔的科研
哈特韦尔对细胞周期研究的重要贡献表现在两个方面:一是发现了大量控制细胞周期的基因,特别是“起点”基因的发现,使人们知道该基因在控制每个细胞循环过程中的第一步起着关键的作用;二是细胞周期检测点的发现,它对细胞在周期运转过程中,保证细胞正常生长和分裂起着至关重要的作用。这两大发现对于全面地了解细胞的生长...

在遗传物质复制、转录和翻译过程中如何确保其准确性?
mRNA上的密码子与tRNA上的反密码子的相互识别,保证了遗传信息准确无误地转译;(4)起始因子及延长因子的作用,起始因子保证了只有起始氨酰-tRNA能进入核糖体P位与起始密码子结合,延伸因子的高度专一性,保证了起始tRNA携带的fMet不进入肽链内部;(5)核糖体三位点模型的E位与A位的相互影响,...

能否详细讲一下复制转录翻译的过程?
深入解析:生命密码的接力赛——复制、转录与翻译的奥秘生物学的微观世界中,遗传信息的传递如同一场精密的接力赛,DNA作为核心的接力棒,通过RNA和核糖体的接力,最终转化为我们体内的各种蛋白质。这一过程,包括了三个关键步骤:复制、转录和翻译,每个环节都充满了科学的奇迹与策略。复制:DNA的精确复制...

dna 复制有哪些细胞
2. 生殖细胞中的DNA复制:生殖细胞,如精子和卵子,负责遗传信息的传递。在精子形成和卵子发育的过程中,DNA复制是确保遗传物质能够准确无误地传递给下一代的关键步骤。因此,生殖细胞的DNA复制机制特别严谨,以保证遗传的准确性与稳定性。总结来说,无论是体细胞还是生殖细胞,DNA复制都是确保生物体遗传...

生物体是怎样保证遗传信息正确传递的?
1、DNA复制的准确性:DNA聚合酶依赖模板,保证遗传信息传代延续中子链与母链配对准确无误。DNA聚合酶具有核酸外切酶活性,复制中出错时有即时校读功能,随时把错误配对的核苷酸切除,并利用其DNA聚合酶活性补回正确的核苷酸。遵守严格的碱基互补配对规律。2、RNA转录的准确性:RNA聚合酶以DNA双链中的有义链...

相似回答