已知积分(0 -> pi/2) tanx dx = +无穷(发散)。
那么积分(0 -> pi/2) (tanx)^(1/2) dx 是否发散?
原题是英文所以翻译过来对于国内的高手看来会有些奇怪(本人在国外读书),所以不能理解题目的话请告诉我。
回答采纳后追加100分。
非常感谢!
英文原题:
Note integral from 0 to pi/2 (tanxdx) = +infinity diverges.
Does I = integral from 0 to pi/2 (tanx)^0.5 dx diverge?
Tip: This trigonometric identity must be used in solving the question: tanx = sinx / cosx.
Tip 2: Consider sinx^0.5 / cosx
(tanx)^0.5 就是根号下tanx 但我不会打根号
追答明白了。
答案是diverges。
∫(0)(π/2)=lim(t->π/2^( - ))∫(0)(t) (tanx)^0.5 dx
显然这个极限不是finite number,那瑕积分就是diverges的。
∫(0)(t)是 integral from 0 to t.
I'm afraid this answer is not good enough for my prof.. Please read the supplementary info again.
追答To complement your proof, you can do the integration of [integral from 0 to t (tanx)^0.5 dx] first.
The supplementary will help prove the limit of that integration is +infinity.
Then I=... diverges. ^ ^
悬赏200分:瑕积分求证题
积分(1 -> 正无穷) 2t^2\/(1+t^4) dt < 积分(1 -> 正无穷) 2t^2\/(t^4) dt =积分(1 -> 正无穷) 2\/t^2 dt = (-2\/t) | (1 -> 正无穷)=2,且积分(1 -> 正无穷) 2t^2\/(1+t^4) dt>0,是有限数 因此应该是收敛,即converge ...
瑕积分:设f(x)在[0,1)上单调递减,f(x)在x趋于0是极限为无穷,且瑕积分f...
是否少了f(x)非负的条件