三角形重心怎么定?

如题所述

重心是三角形三边中线的交点。

重心到顶点的距离与重心到对边中点的距离之比为2:1,重心和三角形3个顶点组成的3个三角形面积相等,重心到三角形3个顶点距离的平方和最小。


三角形的五心

三角形五心是指三角形的重心、外心、内心、垂心、旁心。三条中线的交点是重心,三边垂直平分线的交点是外心,三条内角平分线的交点为内心,三角形三条高线的交点为垂心。重心、外心、内心、垂心只有一个,但旁心有三个。

与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。

1、垂心:三角形的三条高(所在直线)交于一点;

2、外心:三角形的三条边的垂直平分线交于一点;过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心即三角形外心,这个三角形叫做这个圆的内接三角形。

3、内心:三角形的三条内角平分线交于一点。与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心即是三角形内心,内心到三角形三边距离相等。这个三角形叫做圆的外切三角形。

4、旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点。与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。

5、重心:三角形三边中线的交点。

温馨提示:内容为网友见解,仅供参考
无其他回答

三角形的重心性质
三角形的重心是指三角形三条中线的交点。在数学上,重心被定义为三角形三边中线的交点。2. 重心定理 重心的证明定理包括燕尾定理和塞瓦定理。这些定理在几何学中有着重要的应用。3. 重心与顶点的距离比 对于均质物体,比如几何形体具有对称面、对称轴或对称中心,重心到顶点的距离与重心到对边中点的距离...

三角形的重心是什么?
一、重心定义 三角形重心是三角形内部的一个特殊点。它是三条从顶点出发,穿过相对边中点的线段的交点。也可以说,重心是三角形三条边的中点连线的交点。二、几何性质 重心具有许多重要的几何性质。例如,从重心出发,到三角形的每个顶点的线段,与相应的中线之间的比例是固定的,即等于该中线的两倍长度。

三角形重心怎么定?
重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1,重心和三角形3个顶点组成的3个三角形面积相等,重心到三角形3个顶点距离的平方和最小。三角形的五心三角形五心是指三角形的重心、外心、内心、垂心、旁心。三条中线的交点是重心,三边垂直平分线的交点是外心,三条内...

三角形的重心
三角形重心的定义是三角形三条中线的交点。数学上的重心是指三角形的三条中线的交点,其证明定理有燕尾定理或塞瓦定理,应用定理有梅涅劳斯定理、塞瓦定理。对于均质物体,如在几何形体上具有对称面、对称轴或对称中心,则该物体的重心或形心必在此对称面、对称轴或对称中心上。下面介绍几种常用的确定重心...

三角形的重心的定义及性质
三角形的重心的定义及性质如下:三角形重心:三角形三条中线的交点即为三角形重心。三角形的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)4、在平面直角坐标系中,重心的...

三角形重心怎样确定?重心到三边的关系?以及其他关系?
重心是三角形三边中线的交点 1,重心到顶点的距离与重心到对边中点的距离之比为2:1 2,等积:重心和三角形3个顶点组成的3个三角形面积相等。3。重心到三角形3个顶点距离的平方和最小。

怎么判断三角形的重心?
5、三角形内到三边距离之积最大的点。介绍 三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此...

三角形的重心的性质
三个重心到对边中点的线段交于一点:连接重心和三个对边中点的线段交于一点,这个点即为重心。重心将中线按比例分成2:1:重心将每条中线分成两个部分,从重心到顶点的部分与从重心到对边中点的部分的比例为2:1。重心是平衡点:如果把三角形看成一个平面物体,以顶点为质量点,那么重心就是这个物体的...

三角形的重心
三角形的重心是三角形的三条中线交于一点。三角形的五心定理 重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。该点叫做三角形的重心。外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。垂心定理:三角形的三条高交于一点。该点叫做三角形的垂心。

三角形的重心在哪里?
三角形重心定理:三角形的三条中线交于一点,这点位于各中线的三分之二处(自顶点算起)。重心定理的证明:已知:△ABC、AD、BE、CF是三边BC,AC,AB边上的中线;求证:AD、BE、CF三线交于一点,且交点与顶点的距离等于它与对边中点的距离的两倍。证明:设BE与CF交于G点,连结EF;∵EF为中位线...

相似回答
大家正在搜