f(x)=2sinxcosx+2倍根号3cos^x-根号3+2的对称轴方程
f(x))=2sinxcosx+2√3cos^2x-3√3+2 =sin2x+√3cos2x+2 = 2sin(2x+π\/3)+2 于是,对称轴方程 x=kπ\/2+π\/12 (k是整数)
急急急急 !!! 函数f(x)=2sinx cosx + 2倍根号下3 cos^2 x- 根号下3
(1)∵f(x)=2sinX cosX+ 2√3 cos^2 X- √3 =sin2X+√3cos2X =2(sin2XcosЛ\/3+cos2XsinЛ\/3)即:f(x)=2sin(2x+Л\/3)∴f(x)的振幅为2,周期2Л\/2=Л (2) 选2x+Л\/3=0、Л\/2、Л、3Л\/2、2Л时,求出X的取值,此时对应的Y值分别是0、2、0、-2、0 这个5个点...
已知函数f(x)=2sinxcosx+2根号3cos^2x-根号3+2
f(x)=sin(2x)+(根号3)cos(2x)+2 = 2sin(2x+派\/3)+2 于是(1)对称轴方程 x=k派\/2+派\/12 (k是整数)(2)x属于(0,派\/2)时,f(x)的值域是(2-根号3,4),故g(x)值域是(2-根号3+m,4+m),故m的取值范围是(-4,根号3-2)
已知函数f(x)=2sinxcosx+2根号3cos平方x-根号3+2 (1)当x属于(0,#\/2...
f(x)=2sinxcosx+2√3(cosx)^2-√3+2 =sin2x+√3*cos2x+2 =2sin(2x+π\/3)+2 因为x∈(0,π\/2)所以2x+π\/3∈(π\/3,4π\/3)所以2sin(4π\/3)+2<f(x)≤2sin(π\/2)+2 即2-√3<f(x)≤4 因为函数g(x)=f(x)+m有零点 所以m的取值范围是(-4,√3-2]如果不懂,请...
若函数f(x)=2sinxcosx+2根号3cos^2x-根号3 求:
若函数f(x)=2sinxcosx+2根号3cos^2x-根号3求:1、若函数y=g(x)与y=f(x)的图像关于直线x=π\/6对称,求当x∈【0,π\/2】时,y=g(x)的值域?(1)解析:∵函数f(x)=2sinxcosx+2√3cos^2x-√3=sin2x+√3cos2x=2sin(2x+π\/3)∵函数y=g(x)与y=f(x)的图像关于直线...
f(x)=2sinxcosx+2根号3sin∧2x
f(x)=2sinxcosx+2√3cos平方2x-√3 =sin2x+√3cos2x+√3-√3 =2(1\/2sin2x+√3\/2cos2x)=2sin(2x+π\/3)T=2π\/2=π
...函数F{x}=2sinxcosx+2倍根号3 cosx的平方 -根号3
F{x}=2sinxcosx+2倍根号3 cosx的平方 -根号3 =sin2x+√3cos2x =2sin(2x+π\/3)1.2kπ-π\/2<=2x+π\/3<=2kπ+π\/2 增区间kπ-5π\/12<=x<=kπ+π\/12 2.最大值2 x=kπ+π\/12 T=2π\/2=π
已知函数f(x)=2cosxsinx+2倍根号3cos^x-根号3 求f(x)的最小正周期 求f...
f(x)=2cosxsinx+2√3cos^2x-√3 =sin2x+√3(1+cos2x)-√3 =sin2x+√3cos2x =2(sin2x\/2+√3cons2x\/2)=2sin(2x+π\/3)T=2π\/ω=π 单调递增区间 - π\/2+2kπ≤2x+π\/3≤π\/2+2kπ 解得: [-5π\/12+kπ,π\/12+kπ]单调递减区间 π\/2+2kπ ≤2x+π\/3≤2π...
数学题:已知f(x)=2sinxcosx+2根号3cos平方X-1-根号3
f(x)=2sinxcosx+2√3cos²X-1-√3 =sin2x+√3(2cos²X-1)-1 =sin2x+√3cos2x-1 =2sin(2x+π\/3)-1 由2x+π\/3=kπ,k∈Z 得:x=kπ\/2-π\/6,k∈Z ∴ f(x)的对称中心为 (kπ\/2-π\/6,-1),k∈Z 由2x+π\/3=kπ+π\/2,k∈Z 得:x=kπ\/2-π...
已知函数f(x)=sinxcosx-根号3cos^2x+2分之根号3,求函数f(x)的周期和...
f(x)=2cosxsin(x+π\/3)-√3sin^2x+sinxcosx=cosx(sinx+√3cosx)-√3(sinx)^2+sinxcosx=2sinxcosx+√3[(cosx)^2-(sinx)^2]=sin2x+√3cos2x=2sin(2x+π\/3)=x\/50π,sin(2x+π\/3)=x\/100π,由于|sin(2x+π\/3)|