磁场 基本特性,来源,
方向(小磁针静止时极的指向,磁感线的切线方向,外部(N S)内部(S N)组成闭合曲线
要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健)
脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识 各种磁感线分布图
能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图)
安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验
安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量
F安=B I L f洛=q B v 建立电流的微观图景(物理模型)
从安培力F=ILBsinθ和I=neSv推出f=qvBsinθ。
典型的比值定义
(E= E=k ) (B= B=k ) (u= ) ( R= R= ) (C= C= )
磁感强度B:由这些公式写出B单位,单位 公式
B= ; B= ; E=BLv B= ; B=k (直导体) ;B= NI(螺线管)
qBv = m R = B = ;
电学中的三个力:F电=q E =q F安=B I L f洛= q B v
注意:①、B⊥L时,f洛最大,f洛= q B v
(f 、B 、v三者方向两两垂直且力f方向时刻与速度v垂直) 导致粒子做匀速圆周运动。
②、B || v时,f洛=0 做匀速直线运动。
③、B与v成夹角时,(带电粒子沿一般方向射入磁场),
可把v分解为(垂直B分量v⊥,此方向匀速圆周运动;平行B分量v|| ,此方向匀速直线运动。)
合运动为等距螺旋线运动。
带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范)。
规律: (不能直接用)
1、 找圆心:①(圆心的确定)因f洛一定指向圆心,f洛⊥v任意两个f洛方向的指向交点为圆心;
②任意一弦的中垂线一定过圆心; ③两速度方向夹角的角平分线一定过圆心。
2、 求半径(两个方面):①物理规律
②由轨迹图得出几何关系方程 ( 解题时应突出这两条方程 )
几何关系:速度的偏向角 =偏转圆弧所对应的圆心角(回旋角) =2倍的弦切角
相对的弦切角相等,相邻弦切角互补 由轨迹画及几何关系式列出:关于半径的几何关系式去求。
3、求粒子的运动时间:偏向角(圆心角、回旋角) =2倍的弦切角 ,即 =2
×T
4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件
a、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。
b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。
注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。
电磁感应:.
1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。
内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
2.[感应电动势的大小计算公式]
1) E=BLV (垂直平动切割)
2) …=?(普适公式) ε∝ (法拉第电磁感应定律)
3) E= nBSωsin(ωt+Φ);Em=nBSω (线圈转动切割)
4)E=BL2ω/2 (直导体绕一端转动切割)
5)*自感E自=nΔΦ/Δt==L ( 自感 )
3.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量变化,这就是楞次定律。
内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
B感和I感的方向判定:楞次定律(右手) 深刻理解“阻碍”两字的含义(I感的B是阻碍产生I感的原因)
B原方向?;B原?变化(原方向是增还是减);I感方向?才能阻碍变化;再由I感方向确定B感方向。
楞次定律的多种表述
①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动。
③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。(增反、减同)
④楞次定律的特例──右手定则
在应用中常见两种情况:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化。
磁通量的变化与相对运动具有等效性:磁通量增加相当于导体回路与磁场接近,磁通量减少相当于导体回路与磁场远离。因此,
从导体回路和磁场相对运动的角度来看,感应电流的磁场总要阻碍相对运动;
从穿过导体回路的磁通量变化的角度来看,感应电流的磁场总要阻碍磁通量的变化。
能量守恒表述:I感效果总要反抗产生感应电流的原因
电磁感应现象中的动态分析,就是分析导体的受力和运动情况之间的动态关系。
一般可归纳为:
导体组成的闭合电路中磁通量发生变化 导体中产生感应电流 导体受安培力作用
导体所受合力随之变化 导体的加速度变化 其速度随之变化 感应电流也随之变化
周而复始地循环,最后加速度小致零(速度将达到最大)导体将以此最大速度做匀速直线运动
“阻碍”和“变化”的含义
感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。
磁通量变化 感应电流
感应电流的磁场
发生电磁感应现象的这部分电路就相当于电源,在电源的内部,电流的方向是从低电势流向高电势。
4.电磁感应与力学综合
方法:从运动和力的关系着手,运用牛顿第二定律
(1)基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二列方程求解.
(2)注意安培力的特点:
(3)纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系.
5.电磁感应与动量、能量的综合
方法:(1)从动量角度着手,运用动量定理或动量守恒定律
①应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.
②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律.
(2)从能量转化和守恒着手,运用动能定律或能量守恒定律
①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.
②能量转化特点:其它能(如:机械能) 电能 内能(焦耳热)
6.电磁感应与电路综合
方法:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源.解决电磁感应与电路综合问题的基本思路是:
(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.
(2)画出等效电路图.
(3)运用闭合电路欧姆定律.串并联电路的性质求解未知物理量.
功能关系:电磁感应现象的实质是不同形式能量的转化过程。因此从功和能的观点入手,
分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。
交变电流 电磁场
交变电流(1)中性面线圈平面与磁感线垂直的位置,或瞬时感应电动势为零的位置。
中性面的特点:a.线圈处于中性面位置时,穿过线圈的磁通量Φ最大,但 =0;
产生:矩形线圈在匀强磁场中绕与磁场垂直的轴匀速转动。
变化规律e=NBSωsinωt=Emsinωt;i=Imsinωt;(中性面位置开始计时),最大值Em=NBSω
四值:①瞬时值②最大值③有效值电流的热效应规定的;对于正弦式交流U= =0.707Um ④平均值
不对称方波: 不对称的正弦波
求某段时间内通过导线横截面的电荷量Q=IΔt=εΔt/R=ΔΦ/R
我国用的交变电流,周期是0.02s,频率是50Hz,电流方向每秒改变100次。
表达式:e=e=220 sin100πt=311sin100πt=311sin314t
线圈作用是“通直流,阻交流;通低频,阻高频”.
电容的作用是“通交流、隔直流;通高频、阻低频”.
变压器两个基本公式:① ②P入=P出,输入功率由输出功率决定,
远距离输电:一定要画出远距离输电的示意图来,
包括发电机、两台变压器、输电线等效电阻和负载电阻。并按照规范在图中标出相应的物理量符号。一般设两个变压器的初、次级线圈的匝数分别为、n1、n1/ n2、n2/,相应的电压、电流、功率也应该采用相应的符号来表示。
功率之间的关系是:P1=P1/,P2=P2/,P1/=Pr=P2。
电压之间的关系是: 。
电流之间的关系是: .求输电线上的电流往往是这类问题的突破口。
输电线上的功率损失和电压损失也是需要特别注意的。
分析和计算时都必须用 ,而不能用 。
特别重要的是要会分析输电线上的功率损失 ,
解决变压器问题的常用方法(解题思路)
①电压思路.变压器原、副线圈的电压之比为U1/U2=n1/n2;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3=……
②功率思路.理想变压器的输入、输出功率为P入=P出,即P1=P2;当变压器有多个副绕组时P1=P2+P3+……
③电流思路.由I=P/U知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+……
④(变压器动态问题)制约思路.
(1)电压制约:当变压器原、副线圈的匝数比(n1/n2)一定时,输出电压U2由输入电压决定,即U2=n2U1/n1,可简述为“原制约副”.
(2)电流制约:当变压器原、副线圈的匝数比(n1/n2)一定,且输入电压U1确定时,原线圈中的电流I1由副线圈中的输出电流I2决定,即I1=n2I2/n1,可简述为“副制约原”.
(3)负载制约:①变压器副线圈中的功率P2由用户负载决定,P2=P负1+P负2+…;
②变压器副线圈中的电流I2由用户负载及电压U2确定,I2=P2/U2;
③总功率P总=P线+P2.
动态分析问题的思路程序可表示为:
U1 P1
⑤原理思路.变压器原线圈中磁通量发生变化,铁芯中ΔΦ/Δt相等;当遇到“ ”型变压器时有
ΔΦ1/Δt=ΔΦ2/Δt+ΔΦ3/Δt,适用于交流电或电压(电流)变化的直流电,但不适用于恒定电流
温馨提示:内容为网友见解,仅供参考
物理电磁学为什么难学
电磁学之所以难学,原因众多。它融合了力学、热学、光学等多个领域知识,而力学本身就具有较高的难度。电磁学与力学常被一同应用于问题解决,因此在做题时会显得较为复杂。掌握电磁学,需要牢记大量的公式。记住这些公式是基础,但更重要的是要学会将它们拓展应用。死记硬背公式而不会实际运用,等于白费功...
电磁学公式电磁学的物理公式是什么
1、库伦定律:F=kQq\/r^2;2、电场强度:E=F\/q 3、点电荷电场强度:E=kQ\/r_4、匀强电场:E=U\/d 5、电势能:EA=qφAEA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 6、电势差:Uab=Wab\/q 7、静电力做功:W=qU,U为电荷运动的初、末位置电场的电势差,q为电荷的电...
高中物理电磁学有哪些公式
高中物理电磁学常用公式包括:库仑定律,F=k*q1*q2^2,描述两个电荷之间的电力。电场强度公式,E=F\/q,显示电场强度与电力和电荷量的关系。电势能公式,U=q*V,解释了电势能大小与电荷量和电势差的关系。电势差公式,ΔV=Ed,说明d长度内电势差的计算方式。交变电压的方均值公式,Urms= Upeak\/(根...
物理电磁学是什么意思
物理电磁学是物理学的分支学科,主要研究电荷、电场、电磁场、磁场的基本性质和相互作用规律。电磁学是自然科学中的一门极其重要的学科,其研究对象不仅包括电磁波、电磁感应、电传输和磁介质等基本物理现象,而且贯穿着许多现代科学技术领域。物理电磁学的研究成果和应用影响现代电子工业、通讯技术、电力系统、...
高中物理电磁学知识点整理
高中物理电磁学知识点 一、磁现象 最早的指南针叫司南。磁性:磁体能够吸收钢铁一类的物质。磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间最弱。水平面自由转动的磁体,静止时指南的磁极叫南极(S极),指北的磁极叫北极(N极)。磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引。一个...
高考物理电磁学能占多少分
高考物理电磁学的分值分布占总分的30%,这一部分是高考物理的考察重点之一。力学部分则占总分的50%,与电磁学并驾齐驱。光热部分则占有20%,整体构成高考物理的框架。力学分析是物理的基础,包含前期力的分析,如重力、弹力、摩擦力、安培力、洛伦兹力、万有引力等。掌握这些基本的力是理解物体运动状态...
大学物理电磁学公式
大学物理电磁学公式是物理学中最基本和重要的公式之一,涉及到电场、磁场、电荷、电流、电势等重要概念。下面是一些大学物理电磁学公式的介绍。库仑定律 库仑定律是描述电荷之间相互作用的公式,表达式为:F=kq1q2\/r^2 其中,F表示电荷之间的相互作用力,k为库仑常数,q1、q2为电荷量,r为电荷之间的距离...
大学物理知识点与公式-电磁学(全)
大学物理电磁学内容概览 本文主要介绍大学物理电磁学的三大部分,包括静电场、稳恒磁场与电磁感应与时变电磁场。静电场部分主要涵盖库仑定律、电场强度定义式、电场强度叠加原理、三种积分区域与电场强度分布模型、静电场中的高斯定理与环路定理、电势的计算等。有导体时的静电场涉及静电平衡、带电导体所受静电...
求高中物理电磁学公式
电磁学常用公式 库仑定律:F=kQq\/r�0�5 电场强度:E=F\/q 点电荷电场强度:E=kQ\/r�0�5 匀强电场:E=U\/d 电势能:E�6�9 =qφ 电势差:U�6�9 �6�0=φ�6�9-φ...
电磁学公式有哪些,有哪些物理简介?
电磁学公式有:1、库仑定律:F=kQq\/r^2。2、电场强度:E=F\/q。3、点电荷电场强度:E=kQ\/r²。4、匀强电场:E=U\/d。5、电势能:EA=qφA EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}。6、电势差:Uab=Wab\/q。7、静电力做功:W=qU,U为电荷运动的初、...