急求?!十位中外数学家姓名或资料,哪怕少一点儿也行。有悬赏!!!

李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。

朱世杰:《四元玉鉴》

朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)

华罗庚

“数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata

华罗庚是一个传奇式的人物,是一个自学成才的数学家。

他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。

华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。

名师与高徒——陈省生和丘成桐

当今世界数坛,设有两项奖励,可谓举世瞩目,堪于诺贝尔奖相比.一项是在国际数学家大会颁发的菲尔兹(Fields)奖,这项奖只授予不超过40岁的年轻数学家;一项是由以色列沃尔夫基金会于1978年颁发的沃尔夫奖;每奖10万美元(数目最初于诺贝尔奖接近),授予当代最大的数学家.

1983年,旅美中国年轻数学家丘成桐教授荣获沃尔夫大奖,而他的老师美籍中国数学家陈省身教授则获沃尔夫大奖.

陈省身教授是美国科学院院士,1975年美国国家科学奖获得者,当代世界最有影响的数学家之一,现代微分几何的奠基人.

陈省身1911年10月26日出生于浙江省嘉兴县,陈省身教授是国际数学届整体微分几何研究的领导人物.

他1931年在清华大学研究发表的第一篇研究论文,其题材就是有关"投影微分几何"的.

他写的积分几何,把希拉克学派的积分几何工作推到了更高的阶段.

陈省身对当时数学界知之甚少的示性类理论很感兴趣.1945年他发现复流上有反映复结构特征的不变量,后来被命名为陈省身示性类是微分几何学、代数几何学、复解析几何学中最重要的不变量。“它的应用及于整个数学及理论物理”。(沃尔夫奖评语)魏伊说:“示性类的概念被陈的工作整个地改观了。”陈省身因建立代数拓补与微分几何的联系,推进了整体几何的发展彪炳于数学史册。

在将近半个世纪里,陈省身教授在微分几何研究中,取得了一系列丰硕的成果,其最突出的有:(1)关于卡勒(Kahleian)G结构的同调和形式的分解定理:(2)欧几里得空间中闭子流的全曲率和紧嵌入的理论;(3)满足几何条件的子流形成唯一性定理;(4)积分几何中的运动公式。(5)他同格里菲恩(P.Griffiths)关于网上几何(Web geometry)的工作使这方面获得新生命,最近的发展(I.Gelfand,R.Mcpherson);(6)他同莫泽(J.Moser)关于CR-流形的工作最近多复变函数论进展的基础;(7)他同西蒙斯(J.Simons)的特征式是量子力学异常(anomaly)现象的基本数学工具;(8)他同沃尔夫森(J.Wolfson)关于调和映射的工作是整体微分几何的一个问题,在理论物理有重要应用.1959年他在芝加哥大学所撰写的《微分几何》是一部经典名著。

丘成桐1949年4月4日出生在广东省,不久他们全家移居香港,1976年,年仅27岁的丘成桐就解决了微分几何中的一个著名难题-“卡拉比猜想”。卡拉比猜想的解决,使丘成桐成为数学天空新升起的一颗名星,他除解决了卡拉比猜想外,他还解决了许多停多年毫无进展的问题,例如:(1)正质猜想,(2)实与复的蒙日-安培方程。(3)丘成桐的一系列文章对某些紧流形(或有边界的流型)上的拉普拉斯算子的第一特征值,以及其它的特征值都作了深刻的估计。(4)丘成桐和肖荫堂合作,利用极小曲面对弗兰克尔猜想给出一个漂亮的证明,也就是证明了完备的单连通的、具有正的全纯截面曲率的恺勒流形与一个复射空间双全纯等价;(5)丘成桐和米斯克利用三维流形的拓补方法解决极小曲面的经典理论中一些老问题。反过来,他们利用极小曲面理论得出三维拓补学的一些结果:得恩引理和等变环圈定理及等球定理等。

由于丘成桐的出色成就,他1981年获美国数学颁发的维布伦奖,1983年,他在华沙举行的国际数学家大会上荣获菲尔兹奖是当之无愧的.

吴文俊

数学家。1919年5月12日生于上海市。1940年毕业于上海交通大学。1947年赴法国留学。在巴黎法国国家科学研究中心进行数学研究,1949年获法国国家科学博士学位。1951年回国。1957年被聘选为中国科学院院士(学部委员)。历任北京大学数学系教授,中国科学院数学研究所研究员及副所长,中国科学院系统科学研究所研究员及副所长、名誉所长、数学机械化研究中心主任。曾任中国数学会理事长、名誉理事长,中国科学院数学物理学部副主任、主任等职。 吴文俊主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人,为中国数学研究和科学事业的发展作出了重要贡献。1952年刊印出版的博士论文《球纤维示性类》是对球纤维理论基本问题的重要贡献。从40年代起示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这方面成果曾获1956年度国家自然科学奖(中国科学院自然科学奖金)一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为“吴方法”),实现了初等几何与微分几何定理的机器证明,居于世界领先地位。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获1978年全国数学大会重大成果奖和1980年中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面,以及代数几何、中国数学史、对策论等研究中也作出了重要贡献。

杨乐

数学家。1939年11月10日生于江苏南通。1956年考入北京大学数学系,1962年毕业,同年考取中国科学院数学研究所研究生,1966年研究生毕业后留所工作。曾任中国科学院数学研究所所长、中国数学会秘书长、理事长。现任中国科学院数学研究所研究员、学术委员会主任。1980年当选为中国科学院院士(学部委员)。 杨乐在函数模分布论、辐角分布论、正规族等领域,以其众多极富创造性的重要贡献,20年来一直站在世界最前列,是国际上的领头数学家之一。 一、对整函数、亚纯函数的亏值、亏量函数进行了深入研究 与张广厚合作在亚纯函数的亏值数目与Borel方向数目间首次建立了密切联系;在引进亏函数后,给出有穷下级亚纯函数总亏量的估计,从而证明了其亏函数是可数的;给出亚纯函数结合于导数的总亏量的估计,彻底解决了著名学者D.Drasin70年代提出的3个问题。 二、对正规族作了系统研究,获得了一些新的重要的正规定则 杨乐建立了正规族与不动点之间的联系正规族与微分多项式之间的联系,解决了著名学者W.K.Hayman提出的一个正规族问题等。 三、对整函数和亚纯函数的辐角分布进行了系统、深入的研究 杨乐研究在亚纯函数涉及的导数的辐角分布时,获得了一种新型的奇异方向;对辐角分布与重值间的关系得到了深入的结果;完全刻划了亚纯函数Borel方向的分布规律;与Hayman合作解决了Littlewood的一个猜想。 杨乐的上述各项重要研究成果受到国内外同行的高度评价与许多引用,他所得到的亏量关系,被国外学者称为“杨乐亏量关系‘等。
刘徽】中国古代数学家,魏晋时期山东人

个人简介
魏晋时期山东人,出生在公元3世纪20年代后期。据《隋书·律历志》称:“魏陈留王景元四年(263)刘徽注《九章》”。他在长期精心研究《九章算术》的基础上,采用高理论,精计算,潜心为《九章》撰写注解文字。他的注解内容详细、丰富,并纠正了原书流传下来的一些错误,更有大量新颖见解,创造了许多数学原理并严加证明,然后应用于各种算法之中,成为中国传统数学理论体系的奠基者之一。如他说:“徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注”。又说:“析理以辞,解体用图。庶亦约而能周,通而不黩,览之者思过半矣。”他除为《九章》作注外,还撰写过《重差》一卷,唐代改称为《海岛算经》。他的主要贡献在于创造了割圆术,运用极限观念计算圆面积和圆周率;创造十进分数、小单位数及求微数思想;定义许多重要数学概念,强调“率”的作用;运用直角三角形性质建立并推.广重差术,形成特有的准确测量方法;提出“刘徽原理”,形成直线型立体体积算法的理论体系,在例证方面,他采用模型、图形、例题来论证或推广有关算法,加强说服力和应用性,形成中国传统数学风格;他采用严肃、认真、客观的精神,差别粗糙、错误的论述,创造精细、有逻辑的观点,以理服人,为后世学人树立良好的学风;在等差、等比级数方面也有一些涉及和创意。经他注释的《九章算术》影响、支配中国古代数学的发展1000余年,是东方数学的典范之一,与希腊欧几里得(约前330-275)的《原本》所代表的古代西方数学交相辉映。

刘徽从事数学研究时,中国创造的十进位记数法和计算工具“算筹”已经使用一千多年了。在世界各种各样的记数法中,十进位记数法是最先进、最方便的。中国古代数学知识的结晶“九章算术”也成书三百多年了。“九章算术”反映的是中国先民在生产劳动、丈量土地和测量容积等实践活动中所创造的数学知识,包括方田、粟米、哀分、少广、商功、均输、盈不足、方程、勾股九章,是中国古代算法的基础,它含有上百个计算公式和246个应用问题,有完整的分数四则运算法则,比例和比例分配算法,若干面积、体积公式,开平方、开立方程序,方程术--线性方程组解法,正负数加减法则,解勾股形公式和简单的测望问题算法。其中许多成就处于世界领先地位。公元元年前年,盛极一时的古希腊数学走向衰微,“九章算术”的出现,标志着世界数学研究中心从地中海沿岸转到了中国,开创了东方以应用数学为中心占据世界数学舞台主导地位千余年的局面。在编排上,“九章算术”或者先提出术文(命题),后列出几个例题,或者先列出一个或几个例题,后提出术文。然而它对所用的概念没有定义,对所有的术文没作任何推导证明,个别的公式尚有不精确或失误之处。东汉以后的许多学者都研究过“九章算术”,但理论建树不大。刘徽著作的“九章算术注”,主要是给“九章算术”的术文作解释和逻辑证明,更正其中的个别错误公式,使后人在知其然的同时又知其所以然。有了刘徽的注释,“九章算术”才得以成为一部完美的古代数学教科书。

在“九章算术注”中,刘徽发展了中国古代“率”的思想和“出入相补”原理。用“率”统一证明“九章算术”的大部分算法和大多数题目,用“出入相补”原理证明了勾股定理以及一些求面积和求体积公式。为了证明园面积公式和计算园周率,刘徽创立了割园术。在这徽之前人们曾试图证明它,但是不严格。刘徽提出了基于极限思想的割园术,严谨地证明了园面积公式。他还用无穷小分割的思想证明了一些锥体体积公式。在计算园周率时,刘徽应用割园术,从园内接正六边形出发,依次计算出园内接正12边形、正24边形、正48边形,直到园内接正192边形的面积,然后使用现在称之为的“外推法”,得到了园周率的近似值3.14,纠正了前人“周三径一”的说法。“外推法”是现代近似计算技术的一个重要方法,刘徽遥遥领先于西方发现了“外推法”。刘徽的割园术是求园周率的正确方法,它奠定了中国园周率计算长期在世界上领先的基础。据说,祖冲之就是用刘徽的方法将园周率的有效数字精确到7位。在割园过程中,要反复用到勾股定理和开平方。为了开平方,刘徽提出了求“微数”的思想,这与现今无理根的十进小数近似值完全相同。求微数保证了计算园周率的精确性。同时,刘徽的微数也开创了十进小数的先河。

刘徽治学态度严肃,为后世树立了楷模。在求园面积公式时,在当时计算工具很简陋的情况下,他开方即达12位有效数字。他在注释“方程”章节18题时,共用1500余字,反复消元运算达124次,无一差错,答案正确无误,即使作为今天大学代数课答卷亦无逊色。刘徽注“九章算术”时年仅30岁左右。北宋大观三年(1109)刘徽被封为淄乡男。

冯·诺伊曼(1903-1957)美国数学家。生于匈牙利。早年以集合论和数学基础的工作著称,二次大战中参与同反法西斯战争有关的各项科学计划,担任过制造原子弹的顾问。他的科学足迹遍及纯粹数学、应用数学、力学、经济学、气象学、理论物理学、计算机科学及脑科学、他的成就相当于30年科学发展史的概要。他集中研究纯粹数学,涉及到集合论公理系统、元数学、冯·诺伊曼代数算子环等,解决了希尔伯特第五问题,对量子力学加以公理化。1940年他由纯粹数学家转为应用数学家,并应召参与许多重要军事科学计划和工程项目,帮助设计了原子弹的最佳结构,研究空气动力学,转向航空技术。二战后期,他开始计算机研究,在电子计算机逻辑体制中引入代码,编制各种程序,把崭新的科学思想付诸实践,是第一台电子计算机ANIAC诞生的催产师。现代计算机许多基本设.计中都带有他的思想标记。冯·诺伊曼还创立了对策论,抛弃传统的经典力学方法处理经济问题,而代之以新颖的策略思想和组合工具。晚年则致力于自动机理论,意识到计算机和人脑机制的某种类似,为人工智能研究打下了基础。

图灵,英国数学家。早年兴趣集中在"可计算数"上,他的理论奠定了计算机科学理论的基础。二次大战时,图灵奉召到英国外交部通讯部所属的密码学校从事破译工作,他领导的数学家,语言学家和计算人员共同研制了一种快速计算机,能高速分析密码--各种可能的组合。图灵的理想计算机的思想导致了世界上第一台数字式专用"巨人"电子计算机的研制成功,也为二次大战的最后胜利建立了不朽功勋。大战结束后,图灵致力于研制大型电子计算机,写出了计算机总体设计方案,包含了仿真系统、子程序和子程序库、错误自检系统、机器自动编译程序等。图灵在机器智能方面做出了许多开创性的工作。并论述了智能机器的可能性,以他特有的理论彻底性对包括智能计算机在内的所有机器作了严密的分类,把数学计算机分为"有组织的"和"无组织的",两大类。图灵一生的工作覆盖了几个重要领域:数理逻辑、群论、破译码机、计算机、机器智能,并做出了巨大的贡献,他还对与生命起源有密切关系的"形态发生"的化学理论进行了可贵的探索。他的独创性和预见性愈来愈受到人们的敬佩。

笛卡儿(René Descartes 1596~1650),出生于法国,父亲是法国一个地方法院的评议员,相当于现在的律师和法官。一岁时母亲去世,给笛卡儿留下了一笔遗产,为日后他从事自己喜爱的工作提供了可靠的经济保障。8岁时他进入一所耶稣会学校,在校学习8年,接受了传统的文化教育,读了古典文学、历史、神学、哲学、法学、医学、数学及其他自然科学。在学校读书时,校长特许笛卡儿每天早晨在床上读书思考,养成了“晨思”的习惯,一直保持到晚年。笛卡儿后来回忆说,这所学校是“欧洲最著名的学校之一”,但他对所学的东西颇感失望。因为在他看来教科书中那些微妙的论证,其实不过是模棱两可甚至前后矛盾的理论,只能使他顿生怀疑而无从得到确凿的知识,惟一给他安慰的是数学。在结束学业时他暗下决心:不再死钻书本学问,而要向“世界这本大书”讨教。于是1612年到巴黎的普瓦捷大学攻读法学,4年后获博士学位。1618年从军,到过荷兰、丹麦、德国。1621年回国,正值法国内乱,又去荷兰、瑞士、意大利旅行,1625年返巴黎。由于笛卡儿曾独立解决了几道公开征答的数学难题而使他结交了许多科学界的朋友,使他对自己的数学与科学的能力有了信心,于是他决定避开战争,远离社交活动频繁的都市,寻找一处适于研究的环境。1628年,他从巴黎移居荷兰,开始了长达20年的潜心研究和写作生涯,先后发表了许多在数学和哲学上有重大影响的论著。1649年冬,应邀为瑞典女王克里斯蒂娜(1626-1689)讲课,因生活习惯被破坏,数月后患肺炎逝世。(16年后,遗骨运回巴黎)。他的著作在生前就遭到教会指责,死后又被梵蒂冈教皇列为禁书,但这并没有阻止他的思想的传播。

笛卡儿是欧洲近代哲学的创始人之一。黑格尔称他为“现代哲学之父”,恩格斯称他为“辩证法的卓越代表”。同时笛卡儿又是一勇于探索的科学家,在物理学、生理学等领域都有值得称道的创见,特别是在数学上他创立了解析几何,从而打开了近代数学的大门,在科学史上具有划时代的意义。

在笛卡儿之前,几何与代数是数学中两个不同的研究领域。笛卡儿站在方法论的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力。对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学。因此他担出必须把几何与代数的优点结合起来,建立一种“真正的数学”。笛卡儿的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的。依照这种思想他创立了我们现在称之为的“解析几何学”。笛卡儿的具体作法是:引进坐标的概念,建立平面上的点与数对的对应关系;从解决几何作图的问题入手,担出用代数方程表示几何曲线的方法;用求解代数方程的根,解决几何作图问题。用这种办法,笛卡尔轻而易举地解决了古典几何学家用纯几何方法没解决的问题。沿着用代数方程研究几何典线的思路,笛卡儿还得到了一系列新颖的想法与结果。最为可贵的是,笛卡儿用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了典线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期。笛卡儿的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。笛卡儿的主要数学成果集中在他的“几何学”中。值得指出的是,在“几何学”中,笛卡儿根据问题特点选用他的坐标轴系,这是一种斜坐标系,没有出现过标准的现在称为笛卡儿坐标的直角坐标系,后者是由杰出的德国哲学家和数学家G.W.莱布尼茨引入的。
温馨提示:内容为网友见解,仅供参考
第1个回答  2007-07-02
陈景润的照片资料 :
http://image.baidu.com/i?tn=baiduimage&ct=201326592&lm=-1&cl=2&word=%B3%C2%BE%B0%C8%F3

陈景润(1933.5~1996.3)是中国现代数学家。1933年5月22日生于福建省福州市。1953年
毕业于厦门大学数学系。由于他对塔里问题的一个结果作了改进,受到华罗庚的重视,
被调到中国科学院数学研究所工作,先任实习研究员、助理研究员,再越级提升为研究
员,并当选为中国科学院数学物理学部委员。

陈景润是世界著名解析数论学家之一,他在50年代即对高斯圆内格点问题、球内格点问
题、塔里问题与华林问题的以往结果,作出了重要改进。60年代后,他又对筛法及其有
关重要问题,进行广泛深入的研究。

1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,
耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创
造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数
都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世
界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王
元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论
问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(
A�Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。

陈景润于1978年和1982年两次收到国际数学家大会请他作45分钟报告的邀请。这是中国
人的自豪和骄傲。他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一
面不凋的旗帜,辉映三山五岳,召唤着亿万的青少年奋发向前。
陈景润共发表学术论文70余篇。

急求?!十位中外数学家姓名或资料,哪怕少一点儿也行。有悬赏!!!
当今世界数坛,设有两项奖励,可谓举世瞩目,堪于诺贝尔奖相比.一项是在国际数学家大会颁发的菲尔兹(Fields)奖,这项奖只授予不超过40岁的年轻数学家;一项是由以色列沃尔夫基金会于1978年颁发的沃尔夫奖;每奖10万美元(数目最初于诺贝尔奖接近),授予当代最大的数学家. 1983年,旅美中国年轻数学家丘成桐教授荣获沃尔夫大奖...

十位中外数学家生平事迹,急!
我国数学家华罗庚(1910.11.12~1985.6.12)说过:"数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难入微。形数结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!" 这些伟人的话,实际上都是对笛卡儿的贡献的评价。 笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数...

十个数学家的小故事
少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不...

谁知道中国近代数学家的简介和成就?
中国清代数学家。字鄂士,号鹤墅,又号仲乙。钱 塘(今杭州市)人。生于嘉庆十年,卒于咸丰十年。少 年时代与同里谢家禾一起研洽数学,对天文学和机械学 也有浓厚的兴趣。勤于思索,一有所得即使是在夜间也 要秉灯以记。一生致力于数学,淡于功名进取。与当时 的数学家如罗士琳、徐有壬及李善兰等...

有哪些数学家?
1.业余数学家之王——费尔马 费尔马,1601年生于法国南部图鲁斯附近的波蒙,父亲是个商人,从小费尔马就受到良好的家庭教育。他在大学攻读法律,毕业后当了律师。从30岁起,他才开始迷恋上数学,直至逝世的34年里,他的精神世界始终被数学牢牢地统治着。费尔马结交了不少数学高手和哲学家,如梅森、罗伯瓦、迈多治、笛卡尔...

世界上一些著名的数学家的资料
英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,可是这个世界数学领域的精英,在日常生活中却不知商品分类,有的商品名字都叫不出来,被称为“痴人”和“怪人”。 二 作家徐迟在《哥德巴赫猜想》中这样描绘陈景润的内心世界:“我知道我的病早已严重起来。我是病入膏肓了。细菌在...

十个数学家的故事 50个字
十个数学家的故事:1、前212年,古罗马军队突破城防,打进了叙拉古。年已75岁的阿基米德仍在潜心研究数学,证明他的几何题。凶神恶煞的士兵把刀剑指向了他的脑袋。阿基米德明白了将要发生的事情,坦然自若地说:“等一下杀我的头,让我把这条几何定理证完。”然而,无知而又残暴的罗马士兵,一刀砍掉...

数学家的故事(至少五位),谢谢了
这就是老一辈数学家那颗爱国的赤子之心陈景润:小时候,教授送我一颗明珠 20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。 不善言谈,他曾是一个...

请告诉我数学家华罗庚,祖之冲,沈括和高斯的资料
请告诉我数学家华罗庚,祖之冲,沈括和高斯的资料 主要告诉我那些数学家的故事,比如说祖之冲发明圆周率的故事。就讲他最著名的就好,不要太多,只要用口语能把这个故事讲清楚就好。最好找到了资料帮我改一下,不要太多那些名词,都看... 主要告诉我那些数学家的故事,比如说祖之冲发明圆周率的故事。就讲他最著名的...

10个数学家的故事
欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。 事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是...

相似回答