太感谢你了,谢谢!!
追答没事,我也就是帮个忙!
参考资料:http://zhidao.baidu.com/question/245793045.html?an=0&si=1
证明:对任意正实数a,b,c,均有 1\/(a^3+b^3+abc) +1\/(b^3+c^3+abc) +...
即1\/(a^3+b^3+abc)≤1\/(a^2b+b^2a+abc)=1\/ab(a+b+c)同理,1\/(b^3+c^3+abc)≤1\/bc(a+b+c)1\/(a^3+c^3+abc)≤1\/ac(a+b+c)三式子相加,1\/(a^3+b^3+abc)+1\/(b^3+c^3+abc)+1\/(a^3+c^3+abc)≤1\/ab(a+b+c)+1\/bc(a+b+c)+1\/ac(a+b+c)=1\/...
...1\/(a^3+b^3+abc)+1\/(b^3+c^3+abc)+1\/(c^3+a^3+abc)<=1\/(abc)_百 ...
证明:对所有正实数a、b、c,证明完毕。希望对你有所启发。
设a,b,c 为正实数,且abc=1,求证:1\/a^3(b+c)+1\/b^3(c+a)+1\/c^3(a+b...
证明:1\/[a^3(b+c)]=(bc)^3\/(b+c),(bc)^3\/(b+c)+1\/4(b+c)\/(bc)≥bc(均值不等式)(bc)^3\/(b+c)≥bc-1\/4(b+c)\/(bc)=bc-1\/4(1\/c+1\/b)=1\/4(4bc-ab-ac),即 1\/[a^3(b+c)]≥1\/4(4bc-ab-ac),同理 1\/[b^3(a+c)]≥1\/4(4ac-bc-ab),1\/[c^...
证明:1\/(a3+b3+abc)+1\/(b3+c3+abc)+1\/(c3+a3+abc)≤1\/abc
【解】去分母并化简,原式等价于 a6(b3+c3)+b6(c3+a3)+c6(a3+b3)≥2a2b2c2(a3+b3+c3)(1)由对称性,不妨设a≥b≥c.因为 2a2b2c2(a3+b3+c3)≤(a4+b4)c4+(b4+c4)a5+(c4+a4)b5 而 a6(b3+c3)+b6(c3+a3)+c6(a3+b3)-(a4+b4)c5-(b4+c4)a5...
设a,b,c,d是正实数,证明:a+b+c+d\/abcd≤1\/a^3+1\/b^3+1\/c^3+1\/d^3
*1\/(3c^3))=1\/(3abc)1\/(3a^3)+1\/(3b^3)+1\/(3c^3)>=1\/(abc)=d\/abcd 同理 1\/(3a^3)+1\/(3c^3)+1\/(3d^3)>=1\/(acd)=b\/abcd 1\/(3a^3)+1\/(3b^3)+1\/(3c^3)>=1\/(abd)=c\/abcd 1\/(3b^3)+1\/(3c^3)+1\/(3d^3)>=1\/(bcd)=a\/abcd 四式相加,得...
...b+1\/c=1\/a+b+c,求证1\/a^3+1\/b^3+1\/c^3=1\/a^3+b^3+c^3
当 a+b = 0 时,可得:a = -b ,则有:a^3 = -b^3 ,1\/a^3 = -1\/b^3 ,所以,1\/a^3+1\/b^3+1\/c^3 = 1\/c^3 = 1\/(a^3+b^3+c^3) ;同理可得:当 b+c = 0 时,1\/a^3+1\/b^3+1\/c^3 = 1\/a^3 = 1\/(a^3+b^3+c^3) ;当 c+a = 0 时,1\/...
...c均为正实数,则a三次方+b三次方+c三次方+(1\/abc)的最小值为多少...
a^3+b^3+c^3+1\/(abc)=a^3+b^3+c^3+3\/(3abc)=a^3+b^3+c^3+1\/(3abc)+1\/(3abc)+1\/(3abc)>=6(a^3*b^3*c^3*1\/3abc*1\/3abc*1\/3abc)^(1\/6)=6*(1\/27)^(1\/6)=6*根号(1\/3)=2根号3取最小值的条件为a=b=c=1\/(3abc)...
...b、c都属正实数,且abc=1,证明1\/a^3(b+c)+1\/b^3(a...
由于1\/a^3(b+c)=abc\/a^2(ab+bc)=1\/a^2(1\/b+1\/c)令x=1\/a,y=1\/b,z=1\/c,又由于abc=1,a、b、c∈R+,有xyz=1,且x、y、z∈R+,于是只需证明x^2\/(y+z)+y^2\/(x+z)+z^2\/(x+y)≥3\/2.因为x^2\/(y+z)+(y+z)\/4≥x,y^2\/(x+z)+(x+z)\/4≥y,z^2\/(x...
已知a、b、c为正实数,求证:a^3\/bc+b^3\/ca+c^3\/ab>=a+b+c,用演绎推理法...
ca)+b³\/(ab)+c³\/(bc)=a²\/c+b²\/a+c²\/b。又注意到 a²≥b²≥c²,1\/c≥1\/b≥1\/a,由乱序和不小于倒序和知 a²\/c+b²\/a+c²\/b≥a²\/a+b²\/b+c²\/c=a+b+c。综上,原式≥a+b+c。
...b+ c=1,对任意正实数a,b,c,都有m(a^3+ b^3+ c^3)大于等于6(a^2+b...
代入a = b = c = 1\/3得, m\/9 ≥ 3, 因此m ≥ 27.以下证明m = 27时不等式成立.∵a > 0, 9a³ > 0,∴9a³+a ≥ 2·√(9a³·a) = 6a² (均值不等式),∴9a³ ≥ 6a²-a.另一方面,∵27a³ > 0, 1 > 0,∴27a³+2 = ...