(2010年毕节)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于点A(-2,0)、B(4,0),与y轴交于点C(0,4),直线l是抛物线的对称轴,与x轴交于点D,点P是直线l上一动点.
(1)求此抛物线的表达式;
(2)当AP+CP的值最小时,求点P的坐标;再以点A为圆心,AP的长为半径作⊙ A求证BP与⊙A相切;
(3)点P在直线l上运动时是否存在等腰△ACP?若存在,请写出所有符合条件的点P坐标;若不存在,请说明理由.
(2010年毕节)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图...
①当点P1为直角顶点时,点P1与点B重合(如图)令=0, 得 解之得, ,∵点A在点B的右边, ∴B(1,0),A(3,0),∴P1(1,0).②当点A为△APD2的直角顶点是(如图)∵OA=OC, ∠AOC=, ∴∠OAD2=,当∠D2AP2=时, ∠OAP2=,∴AO平分∠D2AP2又∵P2D2∥轴, ∴P2D2⊥AO, ∴...
如图,在直角坐标系中,抛物线y=ax 2 +bx+c(a≠0)与x轴交于点A(-1,0...
0)两点,交y轴于点C(0,3),由题意,得 0=a-b+c 0=9a+3b+c 3=c ,解得: a=-1 b=2 c=3 ∴抛物线的解析式为:y=-x 2 +2x+3,∴y=-(x-1) 2 +4,∴D(1,4);(2)∵PQ⊥x轴,∴P、Q的横坐标相同,∵...
...二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(-2,0)和点B,与y...
∵二次函数y=ax2+bx+c(a≠0)的图象与y轴相交于点C(0,4),∴OC=4.又∵S△ABC=12,∴12AB?OC=12,即12AB×4=12,解得,AB=6.∵点A的坐标是(-2,0),∴点B的坐标是(4,0),∴该抛物线的对称轴是直线x=1.故选B.
如图,在平面直角坐标系中,抛物线y=ax 2 +bx+c(a≠0)的图象经过M(1...
(1) y=x 2 -4x+3;(2) y= x+ 或y=? x? ;(3) (2,1.5),(2,-1.5),(2,-6),(2,6). 试题分析:(1)根据函数图象过x轴上两点M(1,0)和N(3,0),设出函数两点式,将D(0,3)代入解析式,求出a的值,即可求出函数解析式;(2)根据过点A...
如图,在平面直角坐标系中,二次函数y=ax 2 +bx+c(a>0) 的图象的顶点为D...
解:(1)方法一:由已知得:C(0,-3),A(-1,0) 将A、B、C三点的坐标代入得 解得 所以这个二次函数的表达式为: 方法二:由已知得:C(0,-3),A(-1,0) 设该表达式为: 将C点的坐标代入得: 所以这个二次函数的表达式为: (2)方法一:存在,F点的坐标为(2...
在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点...
3b+c=0?b2a=?2c=3,解得a=1b=4c=3;∴抛物线的函数表达式为y=x2+4x+3;(2)如图,过点B作BD⊥AC于点D.∵S△ABP:S△BPC=2:3,∴12AP?BD:12PC?BD=2:3∴AP:PC=2:3.过点P作PE⊥x轴于点E,∵PE∥CO,∴△APE∽△ACO,∴PECO=APAC=25.∴PE=25OC=65,∴65=...
如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧)如图,抛物线y...
解:(1)由题意可知:抛物线的对称轴为x=1.当x=1时,y=3x-7=-4,因此抛物线的顶点M的坐标为(1,-4).当x=4时,y=3x-7=5,因此直线y=3x-7与抛物线的另一交点为(4,5).设抛物线的解析式为y=a(x-1)2-4,则有:a(4-1)2-4=5,a=1.∴抛物线的解析式为:y=x2-2x...
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1...
抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3,0)两点, 则该抛物线可表示为 y = a(x + 1)(x -3) = ax² -2ax -3a 抛物线交y轴与点C(0,3), 3 = -3a, a = -1 y = -x² + 2x + 3 E为线段OC上的三等分点, E(0, 1)或E(0, 2)设P(p...
...中,抛物线y=ax²+bx+c与x轴交于A,B两点(点A在点B的左
4、在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.(1)求直线AC及抛物线的函数表达式;(2)如果P是线段AC上...
...所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0_百度...
解:(1)∵抛物线经过A(0,4)、B(-2,0)、C(6,0)∴得到,解得a=-,b=,c=4 ∴抛物线的解析式为y=-x2+x+4 (或y=-(x+2)(x-6)或y=-(x-2)2+)四边形OADE为正方形;(2)根据题意可知OE=OA=4,OC=6,OB=OF=2,∴CE=2、∴CO=FA=6 ∵运动的时间为t ∴...