连续可导可微可积的关系

如题所述

连续可导可微可积的关系如下:

对于一元函数有,可微<=>可导=>连续=>可积;对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。

可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。

函数可导的条件:

如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

温馨提示:内容为网友见解,仅供参考
无其他回答

可导与连续、可微、可积之间的关系是什么?
可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;可微=>可导=>连续=>可积

可导与可微、连续和可积是什么关系?
可微=>可导=>连续=>可积 可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;

连续可导可微可积的关系
连续可导可微可积的关系如下:对于一元函数有,可微<=>可导=>连续=>可积;对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。可导与连续的关系:可导必连续,连续不一定可导...

可导,连续,有极限,可积,可微的关系
1、可微等于可导;2、可导就比连续,但连续不一定可导;3、设函数在x0点的某个领域内有定义并且函数趋于x0点的极限等于该点函数值,则函数在这点连续。4、函数在(a,b)上连续,则函数可积。5、若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏...

可导,可微,可积和连续的关系
可导、可微、可积和连续之间的关系是:连续是可导、可微的必要条件,但不是充分条件;可导一定可微;可积性则相对独立,但连续函数在闭区间上一定是可积的。下面详细解释这几者之间的关系。可连续性与可导性、可微性的关系:连续是函数的一种基本性质,它描述的是函数值随自变量变化的平稳程度。对于连续...

函数可微分可微,为什么不一定连续?
可微与连续的关系:可微与可导是一样的。可积与连续的关系:可积不一定连续,连续必定可积。可导与可积的关系:可导一般可积,可积推不出一定可导。可微=>可导=>连续=>可积。可微条件 必要条件 若函数在某点可微分,则函数在该点必连续。若二元函数在某点可微分,则该函数在该点对x和y的偏导数...

什么是连续、什么是可导和可微?
可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导。对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在...

函数可微、可导、可积、连续之间的关系 ?相互之间怎么推啊?求大神帮...
在一元的情况下 可导=可微->连续->可积 可导一定连续,反之不一定 二元就不满足了 导数:函数在某点的斜率就是函数在这点的导数 微分:一元情况下,可微和可导意思一样.求导就是求微分.多元就不一样了 积分:积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算 ...

可微可导是否连续?
可微与连续的关系:可微与可导是一样的。可积与连续的关系:可积不一定连续,连续必定可积。可导与可积的关系:可导一般可积,可积推不出一定可导。函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不...

可微与连续有什么关系吗?
可微->可导 或者 可微-> 连续 其他关系不成立,但是一元时 可微=可导 -> 连续 可导与连续的关系:可导必连续,连续不一定可导;可微与连续的关系:可微与可导是一样的;可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导;...

相似回答
大家正在搜