数学中的派“π”到底是怎样得来的

如题所述

π是圆周长与半径之比,近似为3.1415926,
数学家最早用绳绕圆再量绳长的方法得出其近似为3,之后又使用构造类圆多边形(内接多边形与外接多边形)并求其边长的方法得出π,如祖冲之,多边形边越多其边长越接近圆的半径。
温馨提示:内容为网友见解,仅供参考
第1个回答  2022-10-22

如果数学中的派“π”是代表正n边率,那么π就是根据“正n边形的周长与对角线的比”计算得来的。并且与n一一对应的比值。

如果数学中的派“π”是代表圆周率,那么π就是根据"化圆为方"时“圆的周长与直径的比”6+2√3比3计算得来的。也就是:圆周率π=6+2√3/3(或约等于3.1547005...)。

数学中的派“π”到底是怎样得来的
数学家最早用绳绕圆再量绳长的方法得出其近似为3,之后又使用构造类圆多边形(内接多边形与外接多边形)并求其边长的方法得出π,如祖冲之,多边形边越多其边长越接近圆的半径。

“π”是怎么来的?
“π”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实...

π(pai)的值是怎么算出来的``???
2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。 国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1\/7圈(22\/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博...

π是如何被推导的
π作为圆周率,是圆的周长与直径的比值,可以用C\/d表示。最初,人们是从一些经验公式中得到π的近似值的,比如利用正多边形的面积公式来计算圆周率。后来,数学家们发明了一些更高级的方法来计算π,比如阿基米德使用了圆内接多边形的面积来逼近圆的面积,从而得到π的近似值。现代数学中,π的计算已经可以...

π是如何得来的?
“π”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的...

π是多少,怎么计算的?
π是一个数学常数,代表圆的周长与直径的比例,约等于3.14159265358979(小数点后面有无限个数字)。π的计算方法有多种,其中最常见的是通过圆的周长或面积来计算。下面是一些计算π的方法:1. 周长法:将圆的周长除以直径,即可得到π的近似值。例如,对于直径为1的圆,其周长约为3.14159265358979,...

π怎么算的
1、马青公式 π=16arctan1\/5-4arctan1\/239 这个公式由英国天文学教授约翰·马青于1706年发现。2、拉马努金公式 1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。3丘德诺夫斯基公式:这是由丘德诺夫斯基兄弟发现的,十分适合...

派是怎么算出来的?
于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率。公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率和约率,密率是个很好的分数近似值,要取到才能得出比略准确的近似。

"派"(圆周率)这个东东是怎么来的呢?
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到...

兀的来源历史
兀的来源历史如下:π(派)的来源历史可以追溯到古希腊时期。在古希腊,数学家们开始研究圆的性质,并试图找到计算圆的周长和面积的公式。其中,阿基米德是古希腊时期最杰出的数学家之一,他发现了圆的周长公式和圆面积公式,并利用这两个公式计算出了一些圆的周长和面积。在阿基米德之后,古希腊数学家们...

相似回答