有关于解析几何

1.椭圆
2.双曲线
等有关所有的知识点!

越详细越好!
还有典型的例题以及解析!
还有抛物线的相关知识

你想要,那我就给!
还有抛物线?
好的++++++++++++++++〉在下面补充!

1.椭圆
讲解http://www.k12zy.com/word/28/03/280304.htm
试题http://www.k12zy.com/list/shiti/index.htm
定义

椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:
1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的
标准方程

高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

公式
椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如
L = 4a * sqrt(1-e^sin^t)的(0 - pi/2)积分, 其中a为椭圆长轴,e为离心率
椭圆的离心率公式
e=c/a
椭圆的准线方程
x=+-a^2/C
椭圆焦半径公式
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex

相关性质

由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。
例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):
将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。
设两点为F1、F2
对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2
则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2
由定义1知:截面是一个椭圆,且以F1、F2为焦点
用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)

2.双曲线
讲解http://www.k12zy.com/word/12/89/128950.htm
试题http://www.k12zy.com/list/shiti/index.htm
● 双曲线的第二定义:

到定点的距离与到定直线的距离之比=e , e∈(1,+∞)

·双曲线的标准方程为(x^2/a^2)-(y^2/b^2)=1
其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差的绝对值为定值2a

·双曲线的参数方程为:

x=X+a·secθ
y=Y+b·tanθ
(θ为参数)

·几何性质:

1、取值区域:x≥a,x≤-a
2、对称性:关于坐标轴和原点对称。
3、顶点:A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;
B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b。
4、渐近线:
y=±(b/a)x
5、离心率:
e=c/a 取值范围:(1,+∞)

6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率
7 双曲线焦半径公式:圆锥曲线上任意一点到焦点距离。
过右焦点的半径r=|ex-a|
过左焦点的半径r=|ex+a|
8 等轴双曲线 双曲线的实轴与虚轴长相等
2a=2b e=√2
9 共轭双曲线
(x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线
(1)共渐近线
(2)e1+e2>=2√2

双曲线的标准公式为:
X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)
而反比例函数的标准型是 xy = c (c ≠ 0)
但是反比例函数确实是双曲线函数经过旋转得到的

因为xy = c的对称轴是 y=x, y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是 x=0, y=0

所以应该旋转45度

设旋转的角度为 a (a≠0,顺时针)
(a为双曲线渐进线的倾斜角)
则有

X = xcosa + ysina
Y = - xsina + ycosa

取 a = π/4



X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2

= (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2

= 4 (√2/2 x) (√2/2 y)

= 2xy.

而xy=c

所以

X^2/(2c) - Y^2/(2c) = 1 (c>0)

Y^2/(-2c) - X^2/(-2c) = 1 (c<0)

由此证得,反比例函数其实就是双曲线函数

谢谢~

抛物线!

1、定义
平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。
定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.
以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。

2.抛物线的标准方程
右开口抛物线:y^2=2px
左开口抛物线:y^2=-2px
上开口抛物线:y=x^2/2p
下开口抛物线:y=-x^2/2p

3.抛物线相关参数(对于向右开口的抛物线)
离心率:e=1
焦点:(p/2,0)
准线方程l:x=-p/2
顶点:(0,0)

4.它的解析式求法:
三点代入法

5.抛物线的光学性质:
经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴.

6、其他
抛物线:y = ax^2 + bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x-h)* + k
就是y等于a乘以(x-h)的平方+k
h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

给你还要题,还有解析:

我们知道,抛物线y = ax2 + bx + c ( a ≠0 )是轴对称图形,它的对称轴是直线x = - b/ 2a ,它的顶点在对称轴上。解决有关抛物线的问题时,若能巧用抛物线的对称性,则常可以给出简捷的解法。
例1 已知抛物线的对称轴是x =1,抛物线与y轴交于点(0,3),与x轴两交点间的距离为4,求此抛物线的解析式。
分析 设抛物线的解析式为y = ax2 + bx + c 。若按常规解法,则需要解关于a、b、c的三元一次方程组,变形过程比较繁杂;若巧用抛物线的对称性,解法就简捷了。因为抛物线的对称轴为x =1,与x轴两交点间的距离为4,由抛物线的对称性可知,它与x轴交于A(-1,0)、B(3,0)两点。于是可设抛物线的解析式为y = a(x+1)(x-3)。又因为抛物线与y轴交于点(0,3),所以3 = -3a。故a =-1。
∴y = -(x+1)(x-3),即
y = - x2 + 2x +3。
例2 已知抛物线经过A(-1,2)、B(3,2)两点,其顶点的纵坐标为6,求当x =0时y的值。
分析 要求当x =0时y的值,只要求出抛物线的解析式即可。
由抛物线的对称性可知,A(-1,2)、B(3,2)两点是抛物线上的对称点。由此可知,抛物线的对称轴是x = 1。故抛物线的顶点是(1,6)。于是可设抛物线的解析式为y = a(x-1)2+ 6。因为点(-1,2)在抛物线上,所以4a + 6 = 2。故a = -1。
∴y = -(x-1)2+ 6,即
y = - x2 + 2x +5。
∴当x =0时,y = 5。
例3 已知抛物线与x轴两交点A、B间的距离为4,与y轴交于点C,其顶点为(-1,4),求△ABC的面积。
分析 要求△ABC的面积,只要求出点C的坐标即可。为此,需求出抛物线的解析式。由题设可知,抛物线的对称轴是x = -1。由抛物线的对称性可知,A、B两点的坐标分别为(-3,0)、(1,0)。故可设抛物线的解析式为y = a(x+1)2+ 4[或y = a(x+3)(x-1)]。
∵点(1,0)在抛物线上,
∴4a + 4 = 0。∴a = -1。
∴y = -(x+1)2+ 4,即
y = - x2 - 2x +3。
∴点C的坐标为(0,3)。
∴S△ABC = 1/2×(4×3)= 6。
例4 已知抛物线y = ax2 + bx + c的顶点A的纵坐标是4,与y轴交于点B,与x轴交于C、D两点,且-1和3是方程ax2 + bx + c =0的两个根,求四边形ABCD的面积。
分析 要求四边形ABCD的面积,求出A、B两点的坐标即可。为此,要求出抛物线的解析式。由题设可知,C、D两点的坐标分别为(-1,0)、(3,0)。由抛物线的对称性可知,抛物线的对称轴是x = 1。故顶点A的坐标是(1,4)。从而可设抛物线的解析式为y = a(x-1)2+ 4[或y = a(x+1)(x-3)]。
∵点(-1,0)在抛物线上,
∴4a + 4 = 0。故a = -1。
∴y = -(x-1)2+ 4,即
y = - x2 + 2x +3。
∴点B的坐标为(0,3)。
连结OA ,则S四边形ABCD = S△BOC + S△AOB + S△AOD = 1/2×1×3+1/2×3×1+1/2×3×4=9
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-08-29
椭圆
定义

椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:
1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的
标准方程

高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ

公式
椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如
L = 4a * sqrt(1-e^sin^t)的(0 - pi/2)积分, 其中a为椭圆长轴,e为离心率
椭圆的离心率公式
e=c/a
椭圆的准线方程
x=+-a^2/C
椭圆焦半径公式
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex

相关性质

由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。
例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):
将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。
设两点为F1、F2
对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2
则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2
由定义1知:截面是一个椭圆,且以F1、F2为焦点
用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)
。定义
数学上指一动点移动于一个平面上,与平面上两个定点的距离的差的绝对值始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。定值称为2a。

● 双曲线的第二定义:

到定点的距离与到定直线的距离之比=e , e∈(1,+∞)

·双曲线的标准方程为(x^2/a^2)-(y^2/b^2)=1
其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差的绝对值为定值2a

·双曲线的参数方程为:

x=X+a·secθ
y=Y+b·tanθ
(θ为参数)

·几何性质:

1、取值区域:x≥a,x≤-a
2、对称性:关于坐标轴和原点对称。
3、顶点:A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;
B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b。
4、渐近线:
y=±(b/a)x
5、离心率:
e=c/a 取值范围:(1,+∞)

6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率
7 双曲线焦半径公式:圆锥曲线上任意一点到焦点距离。
过右焦点的半径r=|ex-a|
过左焦点的半径r=|ex+a|
8 等轴双曲线 双曲线的实轴与虚轴长相等
2a=2b e=√2
9 共轭双曲线
(x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线
(1)共渐近线
(2)e1+e2>=2√2

双曲线的标准公式为:
X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)
而反比例函数的标准型是 xy = c (c ≠ 0)
但是反比例函数确实是双曲线函数经过旋转得到的

因为xy = c的对称轴是 y=x, y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是 x=0, y=0

所以应该旋转45度

设旋转的角度为 a (a≠0,顺时针)
(a为双曲线渐进线的倾斜角)
则有

X = xcosa + ysina
Y = - xsina + ycosa

取 a = π/4



X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2

= (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2

= 4 (√2/2 x) (√2/2 y)

= 2xy.

而xy=c

所以

X^2/(2c) - Y^2/(2c) = 1 (c>0)

Y^2/(-2c) - X^2/(-2c) = 1 (c<0)

由此证得,反比例函数其实就是双曲线函数
第2个回答  2008-08-29
近几年高考解析几何试题的特点:

1. 题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右, 占总分值的20%左右。

2. 整体平衡,重点突出:《考试说明》中解析几何部分有33个知识点,一般考查16 至18 个,其中对直线、圆锥曲线,极坐标的知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点, 对支撑数学科知识体系的主干知识, 考查时保证较高的比例并保持必要深度。纵观近十年高考对解析几何内容的考查主要集中在如下几个类型:

(1) 曲线形状已定求方程 (91、93、98年高考)。

(2) 曲线形状未定求方程 (94、95年高考)

(3) 由方程讨论曲线的类型 (99年高考)

(4) 与曲线有关的极值问题 (90、97年高考)

(5) 证明曲线的对称性 (98年高考)

(6) 探求曲线方程中几何量及参数间的数量特征 (92、2000年高考
http://user.qzone.qq.com/249223228
第3个回答  2008-08-29
第4个回答  2008-08-29
高中课本上,知识点和例题及解析,应有尽有。为了精确起见,建议你查看几何课本,以避免不必要的错误。

解析几何线关于线对称的问题
1、 先求出两条已知直线的交点;2、 再在对称前的图像上任取一点;3、 设这点关于对称直线的对称点为(x,y);4、 根据两点中点在对称直线上;5、 根据两个点连线的斜率和对称直线斜率乘积等于-1;6、 列出来两个方程,并把x,y解出来;7、 根据之前的交点和求出的点,得到对称后的直线方程...

什么是解析几何
解析几何又分作平面解析几何和空间解析几何。在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。

解析几何包括哪些内容?
解析几何内容如下:1、两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。2、平行四边形性质定理1平行四边形的对角相等。3、矩形判定定理2对角线相等的平行四边形是矩形。4、每一条直线都存在惟一的倾斜角,除与x轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,...

平面"解析"几何中的解析是什么意思,从何而来?
平面解析几何是在坐标系的基础上,用代数方法研究几何问题的一门数学学科,研究的主要的问题是(1)平面曲线的方程;(2)通过方程,研究平面曲线的性质,并作出曲线的图形。平面"解析"几何中的"解析"意思就是用代数的方法解释与分析平面几何。解析几何的产生(即你所问的从何而来?)十六世纪以后,由于...

解析几何的意义?
解析几何的意义 首先,解析几何的意义表现在它所提供的数形结合思想上。在这一思想的指引下,一个几何对象被数(坐标)所完全刻画,几何概念可以表示为代数的形式,几何目标可以通过代数方法来达到;反过来,它使代数语言得到了几何解释,从而代数语言有了直观意义,人们能从中得到启发而提出新的结论。“只要...

哪位大事能给我归纳一下高中数学解析几何啊,椭圆,双曲线,抛物线的知识...
关于解析几何这一块其计算是比较复杂的,但是,其计算一般都具有共性,此外,无论抛物线、椭圆、双曲线,它们既然统称为圆锥曲线,那么它们必有共性!这些性质,个人认为对于提高解析几何的成绩有所帮助。1:计算的共性a:计算中,我们常用到的一般都含有焦点弦,所以,关于焦点弦的斜率啊,怎么设焦点弦的解析式啊,焦点弦长计算啊...

解析几何中的常用结论总结。
4 几何公式和定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B...

解析几何极点极线定理
一、极点极线基本定理是A在B的极线上,则B在A的极线上。在数学中,极线通常是一个适用于圆锥曲线的概念,如果圆锥曲线的切于A、B两点的切线相交于P点,那么P点称为直线AB关于该曲线的极点,直线AB称为P点的极线。但是上面定义仅适用于P点在此圆锥曲线外部的情况。二、极线的几何性质如下:1、...

解析几何学的基本内容有什么?
1. 坐标系:解析几何学使用坐标系来表示空间中的点、直线和平面。常用的坐标系有笛卡尔坐标系、极坐标系和球坐标系等。2. 点、直线和平面的表示:在解析几何学中,点用有序数对表示,直线用参数方程或点斜式表示,平面用一般式或点法式表示。3. 距离公式:解析几何学中有许多关于距离的公式,如点...

关于解析几何的两个问题?
高中学的椭圆,圆的方程算解析几何的 微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论...

相似回答