设三角形ABC的内角A,B,C所对的边分别a,b,c,若(3b-c)cosA=acosC,S三角形ABC=√2,则向量BA*向量AC等于多少
设三角形ABC的内角A,B,C所对的边分别a,b,c,若(3b-c)cosA=acosC,S三角...
解:(3b-c)cosA = acosC (3b-c)[(b^2+c^2-a^2)\/(2bc)] =(a^2+b^2-c^2)\/(2b)(3b-c)(b^2+c^2-a^2)=c(a^2+b^2-c^2)3b(b^2+c^2-a^2) = 2b^2c 3(b^2+c^2-a^2) = 2bc a^2= b^2+c^2 - (2\/3)bc by cosine-rule (2\/3)bc = 2bc cosA co...
...A.B.C所对的边分别为a,b,c,若(√3b-c)cosA=acosC则cosA=
√3sinBcosA =sin(C+A)√3sinBcosA =sinB (*)因为角B是三角形内角,所以sinB>0 则(*)式可化为:√3cosA =1 解得cosA=(√3)\/3
...B、C所对的边分别为a、b、C、若(3b-c)cosA=acosC,则cosA=___百度知...
∵ sinB不为0 ∴ √3cosA=1===>cosA=√3\/3
...B、C所对的边a、b、c.若(根号3 -c)cosA=acosC,则cosA的值是多少_百...
1,过B作AC的垂线,交AC与D,设AD为x,则cosA=x\/c,cocC=(b-x)\/a,代入等式,得x=√3bc\/3,cosA= =√3b\/3.当角A或角C为钝角时用同样的方法算一下。
设三角形ABC的内角A,B,C所对的边分别是a,b,c,
利用正弦定理:a\/sinA=b\/sinB=c\/sinC ∴
...B,C所对的边分别为a,b,c,若(根号3b-c)cosA=acosC,则cosA=
(根号3b-c)cosA=acosC cosC=(a^2+b^2-c^2)\/(2ab)cosA=acosC\/(根号3b-c)=a*[(a^2+b^2-c^2)\/(2ab)]\/(根号3b-c)=(a^2+b^2-c^2)\/[2b(根号3b-c)]
...角A,B,C的对边分别为abc若(✔3b-c)cosA=acosc则cosA=
三分之根号三 提问者ID
...B,C所对的边分别为a,b,c,若(根号3-c)cosA=acosC,则cosA=?
(根号3-c)cosA=acosC 这个条件应该是(根号3b-c)cosA=acosC 否则无解 (√3b-c)cosA=acosC (√3sinB-sinC)cosA=sinAcosC √3sinBcosA=sinAcosC+sinCcosA √3sinBcosA=sin(A+C) √3sinBcosA=sinB cosA=√3\/3
设△ABC的内角A、B、C所对的边长分别为a,b,c,且(2b-3c)cosA=...
=3sin(A+C),2sinBcosA=3sinB,cosA=32,(0<A<π),则A=π6;(2)由cosB=45,则sinB=1-1625=35,由正弦定理可得,b=asinBsinA=1×3512=65,sinC=sin(A+B)=sinAcosB+cosAsinB =12×45+32×35=4+3310.则三角形ABC的面积为S=12absinC =12×1×65×4+3310=12+9350.
设三角形ABC内角ABC所对边长abc则(3b-c)cosA=acosC 求cosA的值 若三角...
cosA=1\/3 2、因为cosA=1\/3 sinA=2根号3\/3 S=1\/2bcsinA=1\/2bc*2根号3\/3=2根号2 则bc=2根号3 cosA=(b^2+c^2-a^2)\/2bc=1\/3 b^2+c^2-a^2=2bc\/3=4根号3\/3 (b+c)^2-a^2-2bc=4根号3\/3 (a+b+c)(b+c-a)=4根号3\/3+2bc=16根号3\/3 要求周长最小值转化求b+...