...+3ax平方+3bx+8在x=1及x=2处取得极值;(1)求a、b的值、(2)求f(x...
对f(x)求导,然后把x等于1和2带进去都为0,可以求出a和b
已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值.(1)求a、b的值...
(1)∵函数f(x)=2x3+3ax2+3bx+8,∴f′(x)=6x2+6ax+3b,∵f(x)在x=1及x=2处取得极值,∴f′(1)=6+6a+3b=0f′(2)=24+12a+3b=0,解得a=-3,b=4.(2)∵a=-3,b=4,∴f′(x)=6x2-18x+12,由f′(x)=6x2-18x+12>0,得x>2,或x<1;由f′...
设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2...
解答:(1)解:∵函数f(x)=2x3+3ax2+3bx+8c,∴f′(x)=6x2+6ax+3b,∵函数f(x)在x=1及x=2取得极值,∴f′(1)=0,f′(2)=0.即6+6a+3b=024+12a+3b=0,解得a=-3,b=4.…(5分)(2)解:由(1)知,f(x)=2x3-9x2+12x+8c,f′(x)=6x2-18x...
已知函数f(x)=2x^3+3ax^2+3bx^2+3bx+8c在x=1及x=2时取得极值。(1)求a...
f(x)=2x^3+3ax^2+3bx+8c,求导,得到f(x)'=6x^2+6ax+3b,又,在x=1与x=2取到极值,故f(x)'=k(x-1)(x-2)=6x^2+6ax+3b,得到 kx^2-3kx+2k=6x^2+6ax+3b,比较系数,得:k=6,-3k=6a,2k=3b 故,a=-3,b=4.所以f(x)=2x^3-9x^2+12x+8c 根据题意有对任意x...
设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a、b的值以及...
3b=4.∴f′(x)=6x2-18x+12=6(x-1)(x-2).经验证当a=-3,b=4时,函数f(x)在x=1及x=2时取得极值.∴a=-3,b=4.∴f(x)=2x3-9x2+12x+8c,f(3)=9+8c,切点(3,9+8c).又f′(3)=12,∴函数在x=3处的切线方程为y-9-8c=12(x-3),即12x-y...
设函数f(x)=2x∧3+3ax∧2+3bx+8c,在x=1及x=2时取得极值 (1)求a.b...
f'(x)=6x²+6ax+3b,则f'(1)=0且f'(2)=0,代入,解得a=-3,b=4,则f'(x)=6(x-1)(x-2)。f(x)在(-∞,1)上递增,在(1,2)上递减,在(2,+∞)上递增。要满足f(x)<C。。。恒成立,只需要研究C>【f(x)】的最大值即可。。
设函数f(x)=2x 3 +3ax 2 +3bx+8c在x=1及x=2时取得极值, (Ⅰ)求a...
解:(Ⅰ) ,因为函数f(x)在x=1及x=2取得极值,则有 ,即 ,解得a=-3,b=4;(Ⅱ)由(Ⅰ)可知, , ,当 ;当 ;当 ,所以,当x=1时,f(x)取得极大值 ,又 ,则当x∈[0,3]时,f(x)的最大值为 ,因为对于任意的x∈[0,3],有 恒成立,所以 ...
已知函数f(x)=2x³+3ax²+3bx+8在x=1及x=2处取得几值,求a,b的值...
∵函数f(x)=2x^3+3ax^2+3bx+8c在x=1及x=2时取得极值,∴令f′(x)=6x²+6ax+3b=0.则 当x=1时,有6+6a+3b=0...(1)当x=2时,有24+12a+3b=0...(2)故解方程(1)(2)得a=-3,b=4.
函数f(x)=2x³+3ax²+3bx+8c在x=1及x=2时取得极值, (1)求a,b...
函数f(x)=2x³+3ax²+3bx+8c在x=1及x=2时取得极值,(1)求a,b的值(2)若对于任意的x∈【0.3】,都有f(x)<c²成立,求c取值范围求解题过程!!!... 函数f(x)=2x³+3ax²+3bx+8c在x=1及x=2时取得极值, (1)求a,b的值 (2)若对于任意的x∈【0.3】,都有f(x)<c²成立,求c取...
设函数f(x)=2x三次方+3ax平方+3bx+8c在x=1及x=2时取得极值。求a,b...
函数f(x)的导函数为:f‘(x)=6x二次方+6ax+3b f(x)在x=1及x=2时取得极值。求a,b的值!那么当x=1及x=2时f‘(x)=0 就是:6+6a+3b=0 24+12a+3b=0 得a=-3,b=4