数学建模模拟多种情况

如题所述

第1个回答  2022-09-26

一. 数学的重要性:

学了这么多年的书,感觉最有用的就是数学课了,相信还是有很多人和我一样的想法的

大家回想一下:有什么课自始至终都用到?我想了一下只有数学了,当然还有英语。

特别到了大学,学信号处理和通信方面的课时,更是感到了数学课的重要性。

计算机:

数据结构,编程算法....哪个不需要数学知识和思想。

有这样的说法,数学系的人学计

算机才是最牛的。

信号与系统:这个变换那个变换的。

通信:此编码彼编码的。

数字图

像与模式识别:这个概率论和数理统计到处都是。

线性代数和矩阵论也是经常出现。

二. 数学的学习方法:

最重要的是遇到问题首先不畏惧,然后知道类似的问题别人是如何处理,我们是否可以

借鉴,然后再比较我们的问题和已有的问题有何异同,已有的方法有什么不足,我们应

从哪里着手考虑新方法。

思考路线比具体推导更重要。

数学并非说得越玄乎越显水平。

真正的理解在于抓住实质,"如果你还觉得某个东西很难、很繁、很难记住,说明你还沉

迷于细节,没有抓住实质,抓住了实质,一切都是简单的。

"这是概率之父Kolmogorov的

名言。

我们平时在学习数学时,也时刻问自己,能不能向一个外行讲清楚这是怎么回事

,如果不能,说明我们自己还没有真正理解。

数学推导的功夫应该是在课下通过大量的

练习得到的,在课下花的时间要远大于课上的时间。

三. 数学软件介绍:

在当今30多个数学类(为区别于文字处理和作图类而加的修饰词)科技应用软件中,就

软件数学处理的原始内核而言,可分为两大类。

一类是数值计算(Number Crunching)

)型软件,如Matlab, Xmath,MLAB等。

这类软件对大批数据具有较强的管理、计算和

可视化能力,运行效率高。

另一类是数学分析(Math Analysis)型软件,如Mathemati

ca、Maple,Macsyma等。

它们以符号计算见长,并可得到解析符号解和任意精度解,但

处理大量量数据时运行效率较低。

经过多年的国际竞争,MATLAB已经占据了数值型软件

市场的主导地位,处于其后的是Xmath;而Maple,Mathematica,Macsyma位居符号软件的

前三名(见IEEE Spectrum)。

在国际流行的科技应用软件中,Mathcad 别具特色。

软件的开发商Mathsoft公司一开始就把面向教学和办公作为Mathcad的市场目标。

在对待

数值计算、符号分析、文字处理、图形能力的开发商,不以专业水准为追求,而尽力集

各种功能于一体。

MathWorks公司顺应多功能需求之潮流,在其卓越数值计算和图视能力

的基础商,又率先在专业水平上开拓其符号计算,文字处理,可视化建模仿真和实时控

制能力,精心营造适合多学科、多部门要求的新一代科技应用软件MATLAB。

对电子系同学最常用的软件而且基本上唯一使用的数学软件就是matlab了。

Matlab 5.3

版本(最新版本6.0版)完全安装,包括帮助、以及各种工具箱一共竟需要1G多硬盘空间

当然,这一个G的容量并不是被各种垃圾文件所充斥,相反的,它是由无数在Matlab系

统上运行的函数文件所占据。

由此可以看出Matlab的功能是多么的全面。

1984年,计算

数学家Steve Bangert、Steve Kleiman、John Little、Cleve Morer在原来 FORTRAN程

序的基础上开发了一个解决线性系统计算问题的C语言程序,他们给它起了个响亮的名字

Matlab(Matrix Laboratory)。

从此以后,Matlab系统便一发而不可收拾,成千上万的软

件工程师、计算科学家、和各种应用领域的科技工作人员加入了Matlab的开发者的行列

他们把各自科研、应用领域中的常用算法用Matlab系统提供的编程语言做成程序集,

于是就产生了Matlab的特色之一:"工具箱系统"(Toolbox)。

在Matlab5.3 中大约有几十

个工具箱,其中包括通信,信号系统分析、离散信号分析、优化、偏微分方程、小波变

换、地图、财经、电力系统、神经网络,数值计算等等。

工具箱中每一个函数都是采用

了该领域中最先进的高效算法,无数这样的函数文本文件组成了Matlab这个巨无霸,由

此可见,Matlab对于解决工程问题是极其具有优越性的。

是我们电子系学生的最爱。

面介绍了Matlab的主要特色之一:工具箱。

下面来谈谈它的另一个特色,就是与其他语

言和编译器之间的接口。

这个问题一直是关于Matlab的最热门的话题。

原因很简单,1.

Matlab如此全面高效的算法和功能都是建立在Matlab提供的平台上才能运行,这样限制

了这些程序的使用范围,即如果想应用这些程序,你首先必需在你的计算机上安装一个

多达几百兆的Matlab,给使用带来了不便。

另外,由于Matlab采用的是逐行解释的方式

来执行代码,因此运行速度比编译为exe 的二进制文件要慢,因此,利用编译器,把m文

件变为二进制的exe或dll文件,会大大缩短计算时间. 尽管Matlab是一个完善的系统,

但毕竟术业有专攻,各种语言的可视化编程环境(如VC,C++Builder,Delphi等)在用户

界面设计和其他系统功能方面具有Matlab不能比拟的快捷和高效,因此,如何把Matlab

强大的数值计算功能与可视编程集成环境IDE结合起来,开发用户操作方便、计算功能完

备、运行快捷的应用程序便成为程序开发者的最大愿望。

Matlab中包含了大量的矩阵运

算、数值运算函数、图形操作函数、用户图形界面函数等等,用他可以象C语言一样书写

函数流程,而且开发WIN图形界面的用户程序。

Matlab强大的功能、方便的操作给它赢得

了世界上最流行的数学软件的桂冠。

难怪在网上大家奔走相告"出国前一定要把Matlab学

好"。

四. 其他数学软件简介(也算开开眼界尽管基本上不用(除了第一个外)):

1. Mat:Mat是MathTools开发的一个m文件解释器(即将Matlab中的编程语

言解

释为C语言),不仅可以把m文件编译为可以独立执行的exe或dll文件,而且可以自动产

生C源代码,供其他高级语言编译器使用。

Mat所实现的在C语言中直接书写类似于ma

tlab语句的功能,带来了以下几个明显的优点:一,是利用Mat编制的程序可以在任

何不安装 Matlab系统的计算机上运行; 二是运行速度比m文件快了数倍;三是实现了Ma

tlab强大的计算功能与各种C编译器界面设计 的完美组合。

我现在最喜欢用的就是在vc

上作界面来方便用户操作,用Mat库实现算法计算,这样相得益彰,用这种方法编成

的程序,操作方便简洁,计算图形功能强大,速度快。

2. Mathmatica:最令人着迷的是它的完美的符号运算功能。

所谓符号运算是指它

所处

理的对象不仅仅是常见的数字(如12或3.14),而是一些带有代数符号的表达式,我们

在代数中曾经学过运用代数的运算规则,对一个含有符号的表达式进行恒等变换,一个

函数就是一种规则或者说映射,比如定义如下一个规则,我们就可以运用这法则将下式

变换。

而Mathematica正是具有这种类似人类思维的功能,它能不断学会并记忆各种变化

规则,并把这些各式各样的变化应用到各种表达式上,无论形式多么复杂,总能得到我

们想得到的带有代数符号的结果。

而在C语言或其他编程语言中,对于一个符号,必须先

声明,然后赋值才能使用。

因此它所表达的含意是有限的,而Mathematica完全抛开了这

种限制,一个符号可以表示任意对象,没有类型限制,真正实现了"代数"中的"代"字。

Mathematica象一个不知疲倦的公式推导家,它能在一秒钟之内将一个复杂的函数关系复

合上万次,它能在各种复杂表达式形式中找到最简单的。

Mathematica对于大一、大二的

同学可能是一个福音,对于大家在高等数学、线性代数中常碰到的对表达式求极限、微

分、定积分、不定积分、级数、向量代数等内容在Mathematica都有内部函数来直接计算

结果。

当然,希望大家还是自己动手练一练公式推导的基本功,把Mathematica当作一个

检验工具是无可厚非。

Mathematica4.0中, 系统函数涵盖了微积分、线性代数、概率、

几何、图论、组合数学、数论数学、特殊函数等绝大多数常用数学分支。

3. Mathcad 8.0,Maple 5: 著名的符号运算数学软件,与Mathematica 类似,内

存管

理较好,SAS 6.12 统计学专业软件,压缩文件100多M(最权威的统计软件)。

4. 其他:SPSS 8.0 社会科学统计软件包;Lindo/Lingo 50线性、非线性规划软件

;A

nsys 5.4 权威的有限元法(FEM)计算软件,安装文件约200~300M ;Algo 有限元法软

件包;Statistics 统计软件 ;Datafit 数值拟合专业软件 ;Origin 6.0 微软的数据

分析绘图软件,可以与Excel数据库通讯;Netlib 网络并行计算库 ;Isoft 电磁仿真软

件 ;Auto 非线性动力系统计算软件 ;Flexpde 2.10 求解偏微分方程的数值软件;Te

cplot 8.0流速与值线流体力学 ;RATS 数值分析软件。

一、是数学建模竞赛

数学建模竞赛就是这样。

它名曰数学,当然要用到数学知识,但却与以往所说的那种数

学竞赛(那种纯数学竞赛)不同。

它要用到计算机,甚至离不开计算机,但却不是纯粹的

计算机竞赛,它涉及物理,化学,生物,电子,农业,管理等各学科,各领域的知识,

但也不是这些学科领域里的纯知识竞赛。

它涉及各学科,各领域,但又不受任何一个具

体的学科,领域的局限。

它要用到各方面的综合的知识,但还不限此。

选手们不只是要

有各方面的知识,还要有驾域这些知识,应用这些知识处理实际问题的能力。

知识是无

止境的,你还必须有善于获得新的知识的能力。

总之,数学建模竞赛,即要比赛各方面

的综合知识,也比赛各方面的综合能力。

它的特点就是综合,它的优点也是综合。

在这

个意义上看,它与任何一个学科领域内的知识竞赛都不相同的特点就是不纯,它的优点

也就是不纯,综合就是不纯。

纯数学竞赛,如中学生的国际数学奥林匹克竞赛,或美国

大学生的普特南数学竞赛,已经有很长的历史,也为大家所熟悉。

特别是近若干年来我

国选手在国际数学奥林匹克竞赛中年年取得好成绩,更使这项竞赛在我国有很高的知名

度,在全国各地的质量教高的中学中广泛开展。

纯数学竞赛主要考核选手对数学基础知

识的掌握情况逻辑推理及证明的能力和技巧思维是否敏捷,计算能力的强弱等。

试题都

是纯数学问题,考试方式是闭卷考试。

参赛学生在规定的时间(一般每次为三小时)内独

立做题,不准交头接耳相互讨论,不准看任何书籍和参考资料,不准用计算机(器) 。

题都有标准答案。

当然,选手的解答方法可以与标准答案不同,但其解答方法的正确与

否也是绝对的,特别是计算题的得数一定要与标准答案相同。

考试结果,对每个选手的

答案给出分数,按分数高低来判定优劣。

尽管也要对参赛的团体(代表一个国家,地区

或学校)计算团体总分,但这个团体总分也是将每个团体的选手得分加起来得到的,在比

赛过程中同一团体的选手们绝对不能互相帮助。

因此,这样的竞赛从本质上说是个人赛

而不相帮助。

因此,这样的竞赛从本质上说是个人赛而不是团体赛。

团体要获胜主要靠

每名选手个自的水平高低而不存在互相配合的问题(当然在训练过程中可以互相帮助)。

这样的竞赛,对于吸引青年人热爱数学从而走上数学研究的道路,对于培养数学家和数

学专门人才,起了很大的作用。

随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大,不但运用于

自然科学各个领域,各学科,而且渗透到经济,军事,管理以至于社会科学和社会活动

的各个领域。

但是,社会对数学的需求并不只是需要在各部门中从事实际工作的人善于

运用数学知识及数学大思维放法来解决他们每天面临的大量的实际问题,取得经济效益

和社会效益。

他们不是为了应用数学知识而寻找实际问题(就象在学校里做数学应用题)

,而是为了解决实际问题而需要用到数学。

而且不止是要用到数学,很可能还要用到别

的学科,领域的知识,要用到工作经验和常识。

特别是在现代社会,要真正解决一个实

际问题几乎都离不开计算机。

可以这样说,在实际工作中遇到的问题,完全纯粹的只用

现成的数学知识就能解决的问题几乎是没有的。

你所能遇到的都是数学和其他东西混杂

在一起的问题,不是"干净的"数学,而是"脏"的数学。

其中的数学奥妙不是明摆在那里

等着你去解决,而是暗藏在深处等着你去发现。

也就是说,你要对复杂的问题进行分析

,发现其中的可用数学语来描述的关系或规律,把这个实际问题化成一个数学问题,这

就称为数学模型,建立数学模型的这个过程就称为数学建模。

模型这个词对我们来说并

不陌生,它可以说是对某种事物的一种仿制品。

比如飞机模型,就是模仿飞机造出来的

既然是仿造,就不是真的,只能是"假冒",但不能是"伪劣",必须真实地反映所模仿

的对象的某一方面的属性。

如果只是模仿飞机的模样,这样的飞机模型只要看起像飞机

就行了,可以摆在展览馆供人参观,照相,但不能飞。

如果要模仿飞机的飞行原理,就

得造一个能飞起来的飞机模型,比如航空模型比赛的作品,它在空气中的飞行原理与飞

机有相同之处。

但当然不像飞机那样靠烧燃料来飞行,外观上也不必那么像飞机,可见

,模型所模仿的都只是真实事物的某一方面的属性。

而数学模型,就是用数学语言(可能

包括数学公式)去描述和模仿实际问题中的数量关系,空间形式等。

这种模仿当然是近似

的,但又要尽可能的逼真。

实际问题中的许多因素,在建立数学模型时你不可能,也没

有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次

要因素,数学模型建立起来后,实际问题化成数学问题,就可以用数学工具,数学方法

去解答。

如果有现成的数学工具当然好。

如果没有现成的数学工具,就促使数学家们(也

包括建立数学模型的人)寻找和发展出新的数学工具去解决它,这又推动了数学本身的发

展。

例如,开普勒由行星运动的观测数据总结出开普勒三定理(这就是行星运行的数学模

型),牛顿试图用自己发现的力学定理去解释它,但当时的数学工具是不够用的,这使了

微积分的发明。

求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行

大量计算。

这在电子计算机发明之前是很难实现的。

因此,很多数学模型,尽管从数学

理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁。

而计算

机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路。

而在现在,要真

正解决一个实际问题,离了计算机几乎是不行的。

数学模型建立起来了,也用数学方法

或数据方法求出了解答,是不是就万事大吉了呢?不是。

既然数学模型只能近似地反映实

际问题中的关系和规律,到底反应的好不好,还需要接受检验。

如果数学模型建立的不

好,如果没有正确地描述所给的实际问题,数学解答再正确也是没有用的。

因此,在得

出数学解答之后还要让所得的结论接受实际的考察,看它是否合理,是否可行。

如果不

符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行

,才算是得到一个解答,可以先付诸实施,但是,十全十美的答案是没有的,已得到的

答案一定还有改进的余地,还可以根据实际情况,或者继续研究和改进;或者暂停告一段

落,待将来有新的情况和要求后再作该进。

上面所说的建立数学模型来解决问题的过程,是各行各业各个领域大量需要的,也是我

们的学生在走上工作单位后常常要做的工作。

做这样的事情,所需要的远不只是数学知

识和解数学题的能力,而需要多方面的综合能力。

社会对具备这种能力的人的需求,比

对数学专门人才的需求要多的多。

因此,在学校里就应当努力陪养和提高学生在这方面

的能力。

当然有多种形式来达到这个目的。

比如开设数学模型方面的课程;让学生多接触

实际工作,得到锻炼,获得知识及其他各方面的能力)去参与解决问题的全过程。

这些实

际问题并不限于某一方面,可以涉及非常广泛的,并不固定的范围。

这样来促进应用人

才的培养。

二、数学模型的基础

1. 数学模型的定义

现在数学模型还没有一个统一的准确的定义,因为站在不同: 的角度可以有不同的定义

不过我们可以给出如下定义。

: "数学模型是关于部分现实世界和为一种特殊目的而作

的一个抽象的、简化的结构。

" : 具体来说,数学模型就是为了某种目的,用字母、数

学及其它:数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特

征及其内在联系的数学结构表达式。

2.建立数学模型的方法和步骤

第一、 模型准备 (问题的提出与分析)

首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特

征。

第二、 模型假设与符号说明

根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设

,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法

欠佳的行为,: 所以高超的建模者能充分发挥想象力、洞察力和判断力 ,善于辨别主次

,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

第三、 模型的建立与求解

通过对问题的分析和模型假设后建立数学模型(模型运用数学符号和数学语言来描述)

,并过设计算法、运用计算机实现等途径(根据模型的特征和要求确定)求解模型!此

过程是整:个数模过程的最重要部分,需慎重对待!

第四、 型的检验

即通过问题所提供的数据或相对于实际生活中的情况对模型的合理性、准确性等进行判

别模型的优劣!可通过计算机模拟等手段来完成!

第五、 模型的完善与推广

此步骤可根据建模时具体情况而定!

关于建模的步骤并不一定必须按照以上几步进行,有兴趣的同仁可参考建模的相关书籍

三、数学建模参考资料:

1、《数学模型基础》 王树禾 中国科学技术大学出版社 1996

2、《数学模型》 谭永基,俞文 复旦大学出版社 1997

3、《数学建模竞赛教程》 李尚志 江苏教育出版社 1996

这些书均可在图书馆借到或在九章书店买到。

其他方面的书也很多,有足够时间可以去

翻翻。

全国大学生数学建模竞赛的有关信息,可在Inter上中国工业与应用数学学业

会 (CSIAM)的主页内浏览,网址为:csiam.edu/。

数学建模比赛每年

的9月下旬举行,每年6月份报名,三人组成一个参赛队。

欲参加比赛的同学应该到数学

系旁听数学模型课或者选修公共选修课"数学模型"。

《吉米多维奇数学分析习题集》

本书只适合超级大牛同学做。

图书馆有借和海淀图书城的九章数学书店有售。

《数学分析中的典型问题与方法》

裴礼文著,高教出版社。

本书可谓宝典级的圣书。

适合一般牛的同学。

图书馆不多,九

章书店有售。

《大学生数学竞赛试题解析选编》

第二版,李心灿等编,高教出版社。

凡是科协课外小组的同学要求人手一本。

里面收集

了北京市大学生数学竞赛的历年真题,比较好,对于水平中等及中等以上的同学均有意

义。

九章数学书店有售。

《高等数学复习题解与指导》

陈文灯著,上下两本,北京理工大学出版社:该书讲解十分详尽,对于各类水平的同学

均有很大的帮助。

呕血推荐!!!九章书店有售。

《数学复习指南》

理工类,陈文灯等著。

该书高数内容与上本书基本一致。

但该书还有线性代数,概率论

等部分,非常全面。

图书馆有借。

各大书店均有售。

适合所有水平的同学。

《高等数学解题过程的分析和研究》

钱昌本著。

该书主要介绍高等数学的思维方法。

例题很有启发性。

图书馆有借。

九章书

店有售。

从常微分方程开始,数学课就变成没底的东西,每一个标题做下去都是数学研究里面庞

大的一块。

对于一门基本课程应该讲些什么也始终讨论不断。

下面开始说参考书,毫无

疑问,我们还是得从我们强大的北方邻国说起。

《常微分方程讲义》

彼得罗夫斯基。

在20世纪数学史上,这位前莫斯科大学校长占据着一个非常特殊的地位

从学术上说,他在偏微那一块有非常好的工作,五十年代谷先生去苏联读学位的时候

还参加过他主持的讨论班。

他从三十年代末开始就转向行政工作。

在他早年的学生里面

有许多后来苏联的高官,所以他就利用和这些昔日学生的关系为苏联数学界构筑了一个

保护伞,他这本书在相当长的时期里是标准教材。

《常微分方程》

庞特里亚金。

庞特里亚金院士十四岁时因化学实验事故双目失明,在母亲的鼓励和帮助

下,他以惊人的毅力走上了数学道路,别的不说,光看看他给后人留下的"连续群","最

佳过程的数学理论",你就不得不对他佩服得五体投地,有六体也投 下来了。

他的这本

课本就是李迅经先生他们翻译的。

此书影响过很多我们的老师辈的人物。

数学建模模拟多种情况
一、是数学建模竞赛 数学建模竞赛就是这样。 它名曰数学,当然要用到数学知识,但却与以往所说的那种数 学竞赛(那种纯数学竞赛)不同。 它要用到计算机,甚至离不开计算机,但却不是纯粹的 计算机竞赛,它涉及物理,化学,生物,电子,农业,管理等各学科,各领域的知识, 但也不是这些学科领域里的纯知识竞赛。 它涉及各...

数学建模模型有哪些
数学建模涉及多种模型,以下是一些主要的类型:1. 微分方程模型 微分方程模型用于描述随时间变化的自然现象。它通过建立变量间的导数关系来模拟系统的动态行为。例如,人口增长、疾病传播和物理振动等现象都可以通过微分方程来建模和分析。2. 概率模型 概率模型用于处理包含随机性和不确定性的系统。在决策分析...

数学建模建模分为几种类型,分别用什么法求解?
数学建模的类型及其解法概述 1. 蒙特卡罗算法:这种算法以随机性模拟为基础,利用计算机仿真解决问题,并可用于验证模型的准确性。在比赛中经常使用。2. 数据处理算法:包括数据拟合、参数估计和插值等。这些算法对于处理比赛中遇到的大量数据至关重要,通常结合Matlab工具应用。3. 数学规划算法:涵盖线性规划...

数学建模有哪些
数学建模有多种类型。一、线性规划模型 线性规划模型是数学建模中最基础的一种,主要用于处理各种资源分配问题。这种模型基于数学中的线性不等式和等式约束,来寻找最优解。例如,在资源有限的情况下,如何分配资源使得收益最大化或者成本最小化,这些问题都可以通过线性规划模型来解决。二、微分方程模型 微...

数学建模有哪些模型
数学建模涉及多种模型,以下是一些常见的类型:1. 线性规划模型:这种模型用于在既定约束条件下,最大化或最小化一个线性目标函数。线性规划模型在生产计划、资源分配和运输问题等领域有着广泛的应用。2. 非线性规划模型:与线性规划不同,非线性规划模型涉及非线性目标函数或约束条件。它适用于复杂系统的...

数学建模模型有哪些
数学建模模型有很多种,主要包括以下几种:1. 微分方程模型 微分方程模型是描述自然现象中随时间变化规律的数学模型。它通过对变量之间的变化率建立方程,来模拟系统的动态行为。例如,人口增长、病毒传播、物理振荡等都可以通过微分方程模型进行建模和分析。2. 概率模型 概率模型主要用于处理具有随机性和不...

数学建模建模分为几种类型,分别用什么法求解?
数学建模应当掌握的十类算法 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常...

数学建模的模型有哪些
数学建模的模型有多种类型,包括但不限于以下几种:一、确定性模型 确定性模型是最简单的数学模型之一,其中变量之间的关系是确定的,没有随机性。这种模型适用于描述自然现象和社会现象中具有一定规律性的情况。常见的确定性模型包括线性模型、非线性模型、微分方程模型等。这些模型可以通过数学公式和计算...

数学建模的方法有哪些
数学建模的方法有多种。一、解析法 解析法是一种数学建模的基本方法,它是通过数学公式和逻辑推导来建立模型的。首先需要对问题进行分析,建立准确的数学模型,再通过数学运算和推导得出模型的解析解。这种方法通常适用于较简单、明确的问题。二、图解法 图解法是一种直观建模方法,它主要通过绘制图表来展示...

数学建模的模型有哪些
数学建模的模型有蒙特卡罗方法、数据拟合、线性规划等。一、蒙特卡罗方法。1、蒙特卡罗方法,也称统计模拟方法,是指使用随机数来解决很多计算问题的方法。2、蒙特卡罗方法是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。与它对应...

相似回答
大家正在搜