怎么用配方法解一元二次方程?

如题所述

解: 1、 配方法是什么?配方法,是数学中非常重要的一个方法。利用添项的手段,将原多项式配上适当的项,使多项式的一部分成为一个完全平方式,这种方法叫做配方法。具体一点说,就是一种将二次多项式ax²+bx+c化为一个一次多项式的平方与一个常数之和的方法。 我们的目的是要把方程的左边化为完全平方、形式如同 x ²+ 2xy + y²=(x + y)²。与ax²+bx+c比较可以推出:2xy = (b/a)x,y² = (b/2a)²
2、配方法的实际步骤如下:
① 方程两边同时除以 二次项系数 , 把二次项系数化为 1 ; ② 把常数项移到方程的右边; ③ 配方,就是在方程两边同时加上一次项系数的 一半 的 平方; ④ 将左边写成平方形式 ,右边合并 ; ⑤ 用直接开平方法,得到方程的解。
3、进一步用字母来表达,则过程如下:
∵ ∵ a≠0,
∴ 两边同时除以a ,得
x2+ bx/a+c/a=0
将常数项移到右边 x2+ bx/a=-c/a
两边同时加上(b/2a)²得
x²+2(bx/2a)+(b/2a)²=-c/a+(b/2a)²
左边化成平方形式 (x+b/2a)²=(b²-4ac)/4a²
∵a≠0,
∴4a²>0,
当b²-4ac≥0时,两边直接开平方,得:
x+ b/ 2a =± √b2-4ac/ 2a ,
移项 得 x=-b/ 2a ± √(b2-4ac )/2a =[-b ± √(b2-4ac )]/2a
所以,方程有两个实数根:
∴x₁= [-b + √(b2-4ac )]/2a ,
x₂=[-b -√(b2-4ac )]/2a 。
经检验 , x₁ 、x₂都符合方程,都是方程的根。
4、配方法的应用 用途很多,比如:
(1)、分解因式
利用配方法来分解因式,常常能将多项式配成A²-B²的形式,再用平方差公式分解。
例 分解因式 (a+b)⁴+(a²-b²)²+(a-b)⁴
分析:题中实际上只含(a+b)和(a-b)两个式子,可分别运用"换元"方法,再进行配方。
设 a+b=m, a-b=n, 则
原式=m⁴+m²n²+n⁴=(m⁴+2m²n²+n⁴)-m²n²=(m²+n²)²-(mn)² =[(m²+n²)+mn][(m²+n²)-mn]
再反过来用(a+b)=m, (a-b)=n 代入, 得
原式=[(a+b)²+(a-b)²+(a+b)(a-b)][(a+b)²+(a-b)²-(a+b)(a-b)]
=(3a²+b²)(a²+3b²)
(2)解一元二次方程 例 2x²+12x+12=26
解; 化简得 x²+6x+6=13
配方得 x²+6x+9=16
(x+3)²=16
两边同时开方 x+3=±4
得 x₁=1, x₂=-7
(2)、求最值 例 已知实数x、y满足方程x²+3x+y-3=0,求(x+y)的最大值。
分析:可将y用含有x的式子来表示,再代入(x+y),求值。
解:x²+3x+y-3=0 移项得 y=3-3x-x²,
代入(x+y),得 x+y=x+(3-3x-x²)=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。
显然 (x+1)²≥0, 故4-(x+1)²≤4,即(x+y)的最大值为4。
(3)、证明”非负性“问题
例 求证 a²+2b+b²-2c+c²-6a+11 ≥ 0
解: 可以将11拆开成9+1+1,从而得 a²+2b+b²-2c+c²-6a+11
=(a²-6a+9)+(b²+2b+1)+(c²-2c+1)
=(a-3)²+(b+1)²+(c-1)²≥0 证明完毕。
(4)、 求抛物线的顶点坐标
例 求y=6x²+12x-6的顶点坐标。
解:y=6(x²+2x-1)=6(x²+2x-1+1-1)=6(x+1)²-12
这条抛物线的顶点坐标是(-1,-12)。
温馨提示:内容为网友见解,仅供参考
无其他回答

怎么用配方法解一元二次方程?
用配方法解一元二次方程的一般步骤:1、把原方程化为的形式;2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;3、方程两边同时加上一次项系数一半的平方;4、再把方程左边配成一个完全平方式,右边化为一个常数;5、若方程右边是非负数,则两边直接开平方,求出方...

怎么用配方法解一元二次方程?
用配方法解一元二次方程的一般步骤:1、把原方程化为的形式。2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1。3、方程两边同时加上一次项系数一半的平方。4、再把方程左边配成一个完全平方式,右边化为一个常数。5、若方程右边是非负数,则两边直接开平方,求出方...

如何用配方法解一元二次方程?
(1)用配方法解一元二次方程的步骤:①把原方程化为一般形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有...

一元二次方程配方法
1、移项。2、化二次项系数为1。3、方程两边都加上一次项系数的一半的平方。4、原方程变形为(x+m)2=n的形式。5、如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解。

用配方法解一元二次方程的基本步骤?
用配方法解一元二次方程的基本步骤?  我来答 1个回答 #活动# 作为妈妈,母亲节你期待收到什么礼物?一笑生 高能答主 2021-07-15 · 天下诸事,一笑淡之,化之。一笑生 采纳数:2291 获赞数:4523 向TA提问 私信TA 关注 展开全部 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 ...

一元二次方程怎么解?
一元二次方程怎么解? 1、公式法:Δ=b²-4ac,Δ<0时方程无解,Δ≥0时。 x=【-b±根号下(b²-4ac)】÷2a(Δ=0时x只有一个) 2、配方法:可将方程化为[x-(-b\/2a)]²=(b²-4ac)\/4a² 可解出:x=【-b±根号下(b²-4ac)】÷2a(公式法就是由此得出的) 3、直接开平方法与配方法相...

用配方法解一元二次方程的步骤是什么?
用配方法解一元二次方程的步骤如下:首先,将二次项系数调整为1,原方程形式为x² + bx + c = 0,通过移项,将常数项c移到等式的右边,得到x² + bx = -c。接着,进行配方,为了使等式左边成为完全平方式,要在等式两边同时加上一次项系数b的一半的平方,即(x + b\/2)²...

一元二次方程配方法
配方法:当一元二次方程化为一般式后,不能用直接开方和因式分解的方法求解时,可以使用此方法。解法步骤:①若方程宴正世的二次晌肢项系数不是1,方程中各项同除以二次项系数,使二次项系数为1;②把常数项移到等号右边;③方程两边同时加上—次项系数一半的平方;④方程左边变成一个完清携全平方式...

一元二次方程配方法
一元二次方程配方法如下:1、看方程中是否有x的平方项和x项,有的话要分别放到等式的两边;2、看方程中是否有1,有的话要分别放到等式的两边;3、将上述两部分加在一起,如果有两个相同的部分,要分别放到等式的两边。用配方法解一元二次方程的一般步骤:1、把原方程化为的形式;2、将常数项移到...

怎么用配方法解一元二次方程?
解: 1、 配方法是什么?配方法,是数学中非常重要的一个方法。利用添项的手段,将原多项式配上适当的项,使多项式的一部分成为一个完全平方式,这种方法叫做配方法。具体一点说,就是一种将二次多项式ax²+bx+c化为一个一次多项式的平方与一个常数之和的方法。 我们的目的是要把方程的...

相似回答
大家正在搜