åé¨ç§¯åæ³æ¯æ±ä¸å®ç§¯åä¸çä¸ç§æ¹æ³ï¼å®å¯ä»¥å°ä¸ä¸ªç§¯å转å为ä¸ä¸ªæå¤ä¸ªæ¯è¾ç®åç积åã
设 $u(x)$ å $v(x)$ é½æ¯å¯å¯¼å½æ°ï¼åæ ¹æ®åé¨ç§¯åå ¬å¼ï¼
$$\int u(x)v'(x)dx=u(x)v(x)-\int v(x)u'(x)dx$$
å¯ä»¥å¾å°ä¸ä¸ªç§¯åçç»æãå ¶ä¸ $u'(x)$ å $v'(x)$ åå«æ¯ $u(x)$ å $v(x)$ ç导æ°ã
æ们å¯ä»¥æç §ä»¥ä¸æ¥éª¤ä½¿ç¨åé¨ç§¯åæ³æ±ä¸å®ç§¯åï¼
é¦å ï¼éå两个å¯å¯¼å½æ° $u(x)$ å $v'(x)$ï¼ä½¿å¾ $u(x)$ å¨æ±å¯¼åæ¯è¾å®¹æï¼è $v'(x)$ å¨ç§¯ååæ¯è¾å®¹æã
æ ¹æ®åé¨ç§¯åå ¬å¼ï¼å°å积å表达å¼ä¸ç $u(x)$ å $v'(x)$ åå«å¯¹åºå°å ¬å¼ä¸ç $u(x)$ å $v'(x)$ã
å°å ¬å¼ä¸ç $v(x)$ å $u'(x)$ åå«æ±åºï¼è¿æ ·æ们就å¾å°äºä¸ä¸ªæ°ç积å表达å¼ã
éå¤æ¥éª¤ 1~3 ç´å°æ°ç积å表达å¼å¯ä»¥æ¯è¾å®¹æå°æ±åºä¸ºæ¢ã
æç»ï¼æ们å¯ä»¥å¾å°åå½æ°ã
举ä¾è¯´æï¼
å设æ们è¦æ± $\int x e^x dx$ çåå½æ°ã
é¦å ï¼æ们éå $u(x)=x$ å $v'(x)=e^x$ï¼é£ä¹æï¼
$$\begin{aligned} \int x e^x dx &= x\int e^x dx - \int (\int e^x dx) dx \ &= xe^x - \int e^x dx \ &= xe^x - e^x + C \end{aligned}$$
å ¶ä¸ $C$ æ¯å¸¸æ°é¡¹ï¼å¯ä»¥æ ¹æ®è¾¹çæ¡ä»¶æ±è§£ãå æ¤ï¼$\int x e^x dx = xe^x - e^x + C$ã
注æï¼åé¨ç§¯åæ³éè¦ä¸å®çæå·§åç»éªæè½éååéç $u(x)$ å $v'(x)$ãææ¶åï¼æ们éè¦è¿è¡å¤æ¬¡åé¨ç§¯åæè½å¾å°ç»æã