如下:
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
十字相乘法法只适用于一元二次方程或者多项式,而且只能是二次三项式。
一元二次方程十字相乘法公式:(x+1)(x+2)=x2。
一、十字相乘法的方法
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
二、十字相乘法的用处
1、用十字相乘法来分解因式。
2、用十字相乘法来解一元二次方程。
相关实例
(ax+b)(cx+d)=acx²+(ad+bc)x+bd。
这个等式反过来写就是:
acx²+(ad+bc)x+bd=(ax+b)(cx+d)。
我们如果把二次项acx²的系数ac和常数项bd写在一个正方形的四个顶点处,那么,让同一条对角线上的两个数相乘之后,我们就得到两个乘积:ad和bc。
让这两个乘积相加,则有ad+bc,这正好是一次项(ad+bc)x的系数。
什么是十字相乘法的运用?
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。...
什么是十字相乘法?怎么用?
十字相乘法是一种用于分解因式的数学方法,适用于系数不为1的二次三项式。通过这种方法,可以将一个二次三项式拆分成两个一次因式的乘积,从而简化解题过程。一、系数不为一的十字相乘法的乘积具体步骤 1、将二次项系数分解质因数。对于二次项2x^2 + 3x + 5,将2分解为2×1。2、将常数项分解质...
谁能告诉我十字相乘是怎么用的?
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两 十字相乘法个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正...
十字相乘法得定义,什么情况下用十字相
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项.其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解.如图所示:当二次三项式ax^2+bx+c的判别式 b^2-4ac是完钱平方数时,一定可以用十字相乘法的。
十字相乘法的用法和口诀是什么?
十字相乘法的用法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。十字相乘法的方法:口诀:分二次项,分常数项,交叉相乘求和得一次项。(拆两头,凑中间)。十字分解法能用于二次...
十字相乘法怎么用?
十字相乘法怎么用如下:1、十字相乘法的方法是十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。2、十字相乘法的用处是用十字相乘法来分解因式或用十字相乘法来解一元二次方程。3、十字相乘法的优点是用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不...
什么是“十指相乘法”???怎么运用???
应该是十字相乘法,这是因式分解的一种方法,一般用在不能使用提取公因式法和公式法的情况下进行因式分解。请参看下例:
什么是十字相乘法
十字相乘法是因式分解中十四种方法之一。十字相乘法 十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。原理就是运用二项式乘法的逆运算来进行因式分解。十字相乘法能用于二次三项式(一元二次式)的分解因式。对于像ax²+bx+c=(a...
行测中的“十字相乘法",怎么运用?
基本式子:x²+(p+q)x+pq=(x+p)(x+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解.上式的常数12可以分解为3*4,而3+4又恰好等于一次项的系数7,所以 上式可以分解为:x^2+7x+12=(x+3)(x+4)又...
什么是十字相乘法 如何应用?
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。