1.高一年级数学必修五知识点
本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:
(1)阅读并且理解题意。(关键是数据、字母的实际意义);
(2)设量建模;
(3)求解函数模型;
(4)简要回答实际问题。
常见考法:
本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。
误区提醒:
1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
2.高一年级数学必修五知识点
一、公理、定理、推论、逆定理:
1.公认的真命题叫做公理。
2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。
3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。
4.如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。
二、类比推理:
一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。如果两道数学题是在一系列属性上相似,或一道是由另一道题来的,这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。
三、证明:
1.对某个命题进行推理的过程称为证明,证明的过程包括已知、求证、证明
2.证明的一般步骤:
(1)审清题意,明确条件和结论;
(2)根据题意,画出图形;
(3)根据条件、结论,结合图形,写出已知求证;
(4)对条件与结论进行分析;
(5)根据分析,写出证明过程
3.证明常用的方法:综合法、分析法和反证法。
四、辅助线在证明中的应用:
在几何题的证明中,有时了为证明需要,在原题的图形上添加一些线度,这些线段叫做辅助线,常用虚线表示。并在证明的开始,写出添加过程,在证明中添加的辅助线可作为已知条件参与证明。
3.高一年级数学必修五知识点
⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=
也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论.
⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=.
⑶若S是以q为公比的等比数列,则有S=S+qS.⑵
⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列.
⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列
万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)
cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)
4.高一年级数学必修五知识点
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△
高中数学必修五知识点归纳是什么?
高中数学必修五知识点归纳是如下:一、向量的基本概念 1、向量:既有大小又有方向的量叫做向量。物理学中又叫做矢量。如力、速度、加速度、位移就是向量。2、平行向量:方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共线向量。3、相等向量:长度相等且方向相同的向量叫做相等向量。二、对于向...
高一必修五数学学了什么
高一数学必修五学习内容包括三章:解三角形,数列,不等式,每一章的学习内容包括:1.解三角形:主要内容为正弦定理和余弦定理,这一章高考必考一个大题。2.数列,主要内容包括数列的定义,通项公式,递推公式,等差数列,等比数列的通项公式以及前n项和,还有数列求和的方法(并项,裂项,错位相减等...
高一数学必修五知识点笔记
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.3、函数零点的求法:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可...
高中数学必修五知识点归纳有哪些?
高中数学必修五知识点归纳如下:1、偶次方根的被开方数不小于零。2、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。3、若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。
高一数学必修五知识点梳理
5.高一数学必修五知识点梳理 函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂...
数学必修五重点内容
b^2=a^2+c^2-2ac*cosB c^2=a^2+b^2-2ab*cosC 延伸(求三角形面积):S=1\/2bc*sinA =1\/2ac*sinB =1\/2ab*sinC 等差数列:an=a1+(n-1)d Sn=n(a1+an)\/2 =na1+n(n-1)d\/2 等比数列:an=a1*q^n-1 Sn=a1(1-q^n)\/1-q =a1-anq\/1-q ...
高一数学必修五知识点总结
高一数学 必修五知识点总结1 【差数列的基本性质】 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d. ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd. ⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列. ⑷对任何m、n,在等差数...
高一年级数学必修五知识点梳理
1.高一年级数学必修五知识点梳理 1.多面体的结构特征 (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。 正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。 (2)棱锥的底面是任意多边形,侧...
高中数学必修五知识点总结
⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.高中数学必修五:等比数列的基本性质 ⑴公比为q的等比数列,...
高一年级数学必修五知识点
2.高一年级数学必修五知识点 一、公理、定理、推论、逆定理:1.公认的真命题叫做公理。2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。4.如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。二、...