1+1/2+1/(1+2+3)+.......+1/(1+2+3+......100)=?

如题所述

第1个回答  2008-09-21
题打错了吧1+1/2+【1/(1+2)】+ 1/(1+2+3)+.......+

1/an=1/[(1+n)*n/2]=2/(1+n)*n=2/n-2/(n+1); n=1,2,……,100
Sn=1+1/2++1/(1+2)+1/(1+2+3)+.......+1/(1+2+3+......100)
=2/1-2/2+2/2-2/3+2/3-2/4+……+2/100-2/101
=2-2/101
=200/101
第2个回答  2008-09-21
1/an=1/[(1+n)*n/2]=2/(1+n)*n=2/n-2/(n+1); n=1,2,……,100
Sn=1+1/2++1/(1+2)+1/(1+2+3)+.......+1/(1+2+3+......100)
=2/1-2/2+2/2-2/3+2/3-2/4+……+2/100-2/101
=2-2/101
=200/101
第3个回答  推荐于2016-12-02
=1+1/2+1/6+1/10+1/15+1/21+...+1/5050
=1+1/2+2(1/12+1/20+1/30+1/42+...+1/10100)
=1+1/2+2(1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7...+1/100-1/101)
=1+1/2+2(1/3-1/101)
=1+1/2+2/3-2/101
=1301/606本回答被提问者采纳

1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...10)=
你应该知道1+2+3+……+50,这种题怎么算吧,公式:(第一项+最后一项)*项数\/2 因此1+2+3+……+50=(1+50)*50\/2 那么1\/(1+2+3+...+50)=1\/【(1+50)*50\/2】,简化为,1\/(1+2+3+...+50)=2*1\/(51*50)1\/(1+2+3+...+50)=2*(1\/50-1\/51),同理 1\/(1...

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(...

1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)等于几?
所以1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)=1+2*[(1\/2-1\/3)+(1\/3-1\/4)+……+(1\/100-1\/101)]=1+2*(1\/2-1\/101)=2-2\/101 =200\/101

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=? 急急急...
根据求和公式:1+2+3+...+n=n(n+1)\/2 所以1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 ...

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+100)=小学解法
小学的解法不是很确定,不知小学生知不知道 1+2+3+...+100=100(100+1)\/2?如果知道就好办了 1=2(1-1\/2)1\/(1+2)=2(1\/2-1\/3)...1\/(1+2...+100)=2\/(100*101)=2(1\/100 -1\/101)1+1\/(1+2)+1\/(1+2+30+...1\/(1+2+...+100)=2(1-1\/101)=200\/101 ...

计算巧算1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……1\/(1+2+3+……+100...
所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1\/3;1\/(3*4)=1\/3-1\/4;...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...99+100)
注意观察,第 N 个加式可以表述成:1\/(1 + 2 + 3 + ... + n)= 1\/[n(n + 1)\/2]= 2\/[n(n + 1)]= 2[1\/n - 1\/(n + 1)]那么有:1\/1 + 1\/(1 + 2) + 1\/(1 + 2 + 3) + ... + 1\/(1 + 2 + 3 + ... + 100)= 1 + 2\/(2*3) + 2\/(3*4) ...

1+1\/1+2+1\/1+2+3+……+1\/1+2+3+……+100
1+2+……+n=n(n+1)\/2 1\/(1+2+……+n)=2\/n(n+1)=2*[1\/n-1\/(n+1)所以1+1\/1+2+1\/1+2+3+……+1\/1+2+3+……+100 =2*[(1\/1-1\/2)+(1\/2-1\/3)+……+(1\/100-1\/101)]=2*(1\/1-1\/101)=200\/101

1+1\/2+1+1\/3+1+1\/4+...+1\/100=?
{逐个通分,相加,约分} 然后再加上99个1.等于 335266167227140350\/3217915406022937 =104.18737751763962036293439468612 1+1\/2+1\/3+...+1\/n这个是发散数列,也就是说要多大可以有多大 没有简便算法!我算的很辛苦的...-_-||| --- 楼主,我们都明白你的意思,只是把所有的1都单独提出来计算,...

怎样算出:1+1\/1+2,+1\/1+2+3,+1\/1+2+3+4...1+1\/1+2+3+4+5...+100...
所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1\/3;1\/(3*4)=1\/3-1\/4;...

相似回答