1+1/(1+2)+1/(1+2+3)+........+1/(1+2+3+....+100)

如题所述

1/(1+2+3+...+n)=1/((1+n)n/2)=2/((n+1)n)=2/n - 2/(n+1)
所以1=2/1 - 2/2
1/(1+2)=2/2 - 2/3
1/(1+2+3)=2/3 - 2/4
1/(1+2+3+4)=2/4 - 2/5
...
1/(1+2+...+n)=2/n - 2/(n+1)
将以上各式相加,
1+1/(1+2)+1/(1+2+3)+........+1/(1+2+3+....+100)
=2-2/(n+1)=2n/(n+1)=200/101
温馨提示:内容为网友见解,仅供参考
第1个回答  2007-09-21
1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…100)=
A. 197/99 B.56/33 C.20 D.1.98

首先肯定排除C,D也可以排除,因为必然不可能为2位小数

估算
56/33=168/99=约1.68

197/99=约1.98(实际基本等于D也可以排除了)
前4项
约算
1+0.33+0.16+0.1+……

可判断
C
第2个回答  2007-09-27
200/101
第3个回答  2007-09-27
我也是

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=? 急急急...
根据求和公式:1+2+3+...+n=n(n+1)\/2 所以1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 ...

计算巧算1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……1\/(1+2+3+……+100...
1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1...

1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...99+100)
那么有:1\/1 + 1\/(1 + 2) + 1\/(1 + 2 + 3) + ... + 1\/(1 + 2 + 3 + ... + 100)= 1 + 2\/(2*3) + 2\/(3*4) + ... + 2\/(100*101)= 1 + 2*(1\/2 - 1\/3) + 2*(1\/3 - 1\/4) + ... + 2*(1\/100 - 1\/101)= 1 + 2*(1\/2 - 1\/101)=...

1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)等于几?
1+2+3+……+n=n(n+1)\/2 1\/(1+2+3+……+n)=2\/[n(n+1)]=2[1\/n-1\/(n+1)]所以1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)=1+2*[(1\/2-1\/3)+(1\/3-1\/4)+……+(1\/100-1\/101)]=1+2*(1\/2-1\/101)=2-2\/101 =200\/101 ...

...+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)快的好的50悬赏_百度...
1\/(1+2+3+4)=1\/10=2*(1\/4-1\/5)...同理 1\/(1+2+3+...+100)=1\/5050=2*(1\/100-1\/101)所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2*【(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)...+(1\/100-1\/101)】=1+2*【1\/2-1...

怎样算出:1+1\/1+2,+1\/1+2+3,+1\/1+2+3+4...1+1\/1+2+3+4+5...+100_百 ...
所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1\/3;1\/(3*4)=1\/3-1\/4;...

1+1\/(1+2)+1\/(1+2+3)...1\/(1+2+3+4...100)
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 分数计算方法:...

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+100)=小学解法
小学的解法不是很确定,不知小学生知不知道 1+2+3+...+100=100(100+1)\/2?如果知道就好办了 1=2(1-1\/2)1\/(1+2)=2(1\/2-1\/3)...1\/(1+2...+100)=2\/(100*101)=2(1\/100 -1\/101)1+1\/(1+2)+1\/(1+2+30+...1\/(1+2+...+100)=2(1-1\/101)=200\/101 ...

1\/1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3...100)
裂项法:1\/1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3...100)=2\/1x2+2\/2x3+2\/3x4+……+2\/100x101 =2x(1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/100-1\/101)=2x(1-1\/101)=2-2\/101 =1又99\/101

相似回答