求由隐函数y=ln(xy)所确定的函数y=y(x)的导数dy/dx

如题所述

第1个回答  2022-07-25
y'=(y+xy')/(xy)
xyy'-xy'=y
y'=y/(xy-x)
所以dy/dx=y'=y/(xy-x)

求由隐函数y=ln(xy)所确定的函数y=y(x)的导数dy\/dx
y'=(y+xy')\/(xy)xyy'-xy'=y y'=y\/(xy-x)所以dy\/dx=y'=y\/(xy-x)

...导数x\/y=ln(xy)所确定的隐函数y=y(x)的导数dy\/dx. 请答的详细点谢谢...
(ln(xy) + 1)dy = (1 - y\/x)dx dy\/dx = (x - y)\/(xln(xy) + x)

y= ln(xy)求dy\/ dx?
解:y=ln(xy)求dy\/dx 解:两边对x求导。y=ln(xy)=lnx+lny y'=1\/x+1\/yxy'xyy'=y+xy'xyy'-xy'=y (xy-x)y'=y y'=y\/(xy-x)=y\/x(y-1)因为y不知道,所以是隐函数求导。y是没法解出来的。y-lny=lnx ln(e^y)-lny=lnx ln(e^y\/y)=lnx e^y\/y=x y既在指数位置1...

求由方程y=1+xsiny所确定的隐函数y=y(x)的导数dy\/dx
回答:两端同时对x求导得dy\/dx=siny+x*cosy*dy\/dx解得dy\/dx=siny\/(1+xcosy)

x\/y=ln(xy)求隐函数y的导数dy\/dx,
x=yln(xy),等式两端对x求导,1=dy\/dx+y[1\/ln(xy)][y+x(dy\/dx)]=dy\/dx+y\/ln(xy)+xdy\/dx,整理得 (dy\/dx)(1+x)=1-y\/ln(xy),即dy\/dx={[ln(xy)-y]\/[(1+x)ln(xy)]

xy=lnxy隐函数求dy\/dx
xy=lnxy 两边对x求导 y+xy'=[1\/(xy)]·(y+xy')y+xy'=(1\/x)+y'\/y y'(x-1\/y)=1\/x-y ∴dy\/dx=y'=(1\/x-y)\/(x-1\/y)=(y-xy²)\/(x²y-x)

x\/y=ln(xy)求隐函数y的导数dy\/dx?
直接两边对x求导,得1\/y*(-1\/y2)*dy\/dx=1\/xy*(y+xdy\/dx) 下面会了吧,3,先令k=dx\/dy然后两边分别对x 求导得到,1\/dy\/dx=1\/(xy)(y+x*dy\/dx) 然后再合并同类项得 k-1\/(ky)=1\/x k^2*y-ky\/x=1 然后反解出k 那么 dy\/dx=1\/k,0,x\/y=ln(xy)求隐函数y的导数dy\/d...

...ln(xy)=e^(x+y)所确定的隐函数y=y(x)的导数dy\/dx. 请答的详细点谢谢...
[ln(xy)]' = [e^(x+y)]'(xy)'\/(xy) = e^(x+y) * (x+y)'(y + xy')\/(xy) = e^(x+y) *(1 + y')y' = y[e^(x+y) -1]\/[x(1 - ye^(x+y)]

求方程所确定的隐函数y的导数dy\/dx
1 = (dy\/dx)lnx + y\/x + (dy\/dx)lny + dy\/dx dy\/dx = [1 - y\/x]\/[1 + ln(xy)] = y(x - y)\/x(x + y)2x²y - xy² + y³ = 0 4xy + 2x²dy\/dx - y² - 2xydy\/dx + 3y²dy\/dx = 0 dy\/dx = y(y - 4x)\/(2x&s...

求下列由方程所确定的隐函数y=y(x)的导数dy\/dx
答:e^x-e^y-sin(xy)=0 两边对x求导:e^x -(e^y)y'-cos(xy)*(y+xy')=0 所以:[xcos(xy)+e^y]*y'=e^x-ycos(xy)所以:dy\/dx=y'= [e^x-ycos(xy) ] \/ [ xcos(xy)+e^y ]

相似回答
大家正在搜