1、霍奇猜想(Hodge conjecture):
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
2、庞加莱猜想(Poincaré conjecture):
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,法国数学家庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
3、黎曼假设:
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯粹数学及应用数学中都起着重要作用。
在所有自然数中,素数分布似乎并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于所谓的黎曼ζ函数。
黎曼假设断言,方程ζ(s)=0的非平凡零点的实部都是1/2,即位于直线1/2 + ti(“临界线”,critical line)上。这点已经对于开首的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立,将为围绕素数分布的许多奥秘带来光明。
4、杨-米尔斯(Yang-Mills)存在性和质量缺口:
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和罗伯特·米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。
尽管如此,他们的既描述重粒子、又在数学上严格的方程,并没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。
周氏猜测:
当2^(2^n)<p<2^(2^(n+1))时,Mp有2^(n+1)-1个是素数。
周海中还据此作出推论:当p<2^(2^(n+1))时,Mp有2^(n+2)-n-2个是素数。
关于梅森素数的分布研究,英国数学家香克斯、德国数学家伯利哈特、印度数学家拉曼纽杨和美国数学家吉里斯等曾分别提出过猜测,但他们的猜测有一个共同点,就是都以近似表达式提出;而它们与实际情况的接近程度均难如人意。
唯有周氏猜测是以精确表达式提出,而且颇具数学美。这一猜测至今未被证明或反证,已成了著名的数学难题。
美籍挪威数论大师、菲尔茨奖和沃尔夫奖得主阿特勒·塞尔伯格认为:周氏猜测具有创新性,开创了富于启发性的新方法;其创新性还表现在揭示新的规律上。
数学上的难题很多很多,有很多数学难题几百年都没有得到解决。而数学家们也在不断探索和冲锋,以求解决这些问题。问题的提出是富有意义的,问题的探索和解决过程也是极富意义的。下面列了几个猜想,欢迎大家一起交流和讨论。
哥德巴赫猜想
等级:五颗星,数学王冠上的钻石;
内容:哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。
进展:1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。1956年,王元证明了“3+4”;同年,原苏联数学家阿·维诺格拉朵夫证明了“3+3”;1957年,王元又证明了“2+3”;潘承洞于1962年证明了“1+5”;1963年,潘承洞、巴尔巴恩与王元又都证明了“1+4”;1966年,陈景润在对筛法作了新的重要改进后,证明了“1+2”。
黎曼猜想
等级:五颗星,巍峨山峰,屹立不倒;
内容:黎曼函数的所有的非平凡零点,实部都是1/2。1859年,黎曼被选为了柏林科学院的通信院士,之后他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。
进展:黎曼猜想自 “诞生”以来,已过了160个春秋,在这期间,它就像一座巍峨的山峰,吸引了无数数学家前去攀登,却谁也没能登顶。有人统计过,在当今数学文献中已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。如果黎曼猜想被证明,所有那些数学命题就全都可以荣升为定理;反之,如果黎曼猜想被否证,则那些数学命题中起码有一部分将成为陪葬。
费马大定理
等级:五颗星,困惑了世间智者358年的迷;
内容:1637年,法国业余数学家费马在研读丢番图的《算术》时,在书上写了短短的几行,大意为:除平方之外,任何次幂都不能拆分为两个同次幂之和。我已经找到了一个绝妙的证明,但书边空白过窄,写不下。
进展:这个恶作剧式的问题就是著名的费马大定理,这个谜题困惑了数学界整整358年之久,在这期间大名鼎鼎的数学家欧拉、高斯、柯西、勒贝格等人都有过不同的尝试,但均未成功。直到1994年,由英国数学家安德鲁-怀尔斯解决。
孪生素数猜想
等级:五颗星,数论史上的经典难题,171岁“高龄”了;
内容:在1849年,阿尔方·德·波利尼亚克提出了一般的猜想:对所有自然数k,存在无穷多个素数对(p, p + 2k)。k = 1的情况就是孪生素数猜想。孪生素数就是指相差2的素数对,例如3和5,5和7,11和13…。这个猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
进展:2013年4月17日,数学家张益唐将论文投给世界数学界最负声誉的《数学年刊》(Annals of Mathematics),在张益唐的论文中,他给出的结果是,存在无数对相邻素数,它们的差相差不过7000万。但这只是一个估计,并非张益唐的方法能得到的最好结果。在论文出炉后,一些数学家吃透了新方法,开始试着改进这个常数,进一步拉近了与最终解决孪生素数猜想的距离。在2014年2月,张益唐的七千万已经被缩小到246。
庞加莱猜想:
等级:五颗星;
内容:1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但1905年发现其中的错误,修改为:“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。”后来这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。
通俗易懂的语言描述这个问题就是:上图中的小球,我们用一根绳子套住,绳子的两端在黄点位置相遇,如果在黄点用力向左右两端拉绳子,会发现绳子套的圈在慢慢缩小,最后可以缩小到一个点,将绳子收回。
进展:大于等于五维的庞加莱猜想被斯蒂芬·斯梅尔证明;四维的庞加莱猜想被迈克尔·弗里德曼证明;三维的庞加莱猜想被俄罗斯数学家佩雷尔曼于2002-2003年证明。他们分别获得1966年,1986年和2006年菲尔兹奖。2006年8月,有着数学界诺贝尔奖之称的“菲尔兹奖”,授予了佩雷尔曼,以表彰他在几何学上的贡献。一枚印有阿基米德浮雕头像的奖章和约1.35万美元的奖金,同样被拒之门外。对此,他给出的理由是“没有路费来领奖”。
(转自头条号-数学经纬网)
世界顶级未解数学难题都有哪些?
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和罗伯特·米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福...
数学世界十大难题是指哪十个?
数学世界十大难题:1、科拉兹猜想 科拉兹猜想又称为奇偶归一猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。2、哥德巴赫猜想 哥德巴赫猜想是数学界中存在最久的未解问题之一。它可以表述为:任一大于2的偶数,都可表示成两个素数...
世界三大未解数学难题是什么?
世界三大未解数学难题如下。1.第一题:三等分任意角。用一把没刻度的尺子和圆规来三等分任意角。2.第二题:化圆为方。把一个圆“兑换”成相同大小的正方形。3.第三题:尺规作图。用一把没有刻度的尺子和一把圆规作出漂亮的对称图形。世界近代三大数学难题之一四色猜想的提出来自英国。1852年,毕业...
世界上有哪些至今没有解决的数学难题
6. 黎曼猜想:黎曼猜想关注的是黎曼ζ函数在s=1时的零点。这个猜想至今未解,但它与数论函数、经济社会等多个领域潜在的联系使得它备受关注。据说,纳什曾在解决这个问题时精神失常。7. 角谷猜想:这个猜想涉及一个自然数,如果它是偶数,就除以2;如果它是奇数,就乘以3并加1。最终,这个数总会归结...
数学上有什么未解之谜
世界有七大数学难题,目前已经解决庞加莱猜想和黎曼假设,其余难题如下:1、NP完全问题:是不确定性图灵机在P时间内能解决的问题,是NP类中“最难”的问题,即它们是最可能不属于P类的,这是因为任何NP中的问题可以在多项式时间内变换成为任何特定NP完全问题的一个特例;2、霍奇猜想:是代数几何的一个...
世界三大未解数学难题是什么?
世界三大未解数学难题包括以下几个方面。1. 三等分任意角:使用一把没有刻度的尺子和圆规来将任意角三等分。2. 化圆为方:找到一种方法,将一个圆转换成同样大小的正方形。3. 尺规作图:仅利用无刻度尺和圆规,创作出完美的对称图形。四色猜想是近代世界三大数学难题之一,其起源可以追溯到英国。1852...
世界八大数学难题是什么?
世界八大数学难题介绍 1. 哥德巴赫猜想:这个猜想提出任意一个大于2的偶数都可以表示为两个质数之和。著名的数学家陈景润在1970年代证明了“1+2”部分,即任意一个大于等于6的偶数都可以表示为三个质数之和,其中两个质数相邻。2. 费马猜想:又称为“费马大定理”,它断言当指数n大于2时,方程a^n ...
世界数学未解的难题有哪些
一、庞加莱猜想:任何一个封闭的三维空间,只要它内部所有的封闭曲线都可以收缩成一点,这个空间必定是一个三维球体。这个猜想已经世纪之久,至今仍未解开。二、NP完全问题:如果有人告诉你,数字13717421可以写成两个较小的数的乘积,你可能不会立即相信。但如果他告诉你它可以分解为3607乘以3803,你可以...
世界十大数学难题
10. 贝赫-斯维讷通-戴尔猜想:代数几何的神秘联结最后,代数几何中的这一猜想,揭示了模形式与椭圆曲线之间深邃的联系,如同一条无形的数学纽带,编织着数学的宇宙图景。这些数学难题,既是挑战,也是探索,它们构成了数学的壮丽景观,等待着一代又一代的勇士去征服,去揭示其中的奥秘。
数学领域有哪些至今未解的难题?
数学领域有许多至今未解的难题,以下是其中一些:1.黎曼猜想:关于素数分布的问题。黎曼猜想认为素数的分布遵循一定的规律,但至今尚未找到证明或反驳该猜想的方法。2.庞加莱猜想:关于三维空间中封闭无边界的形状的问题。庞加莱猜想认为三维空间中的封闭无边界形状一定是由无质量、无电荷的物质组成的,但...