解比例.正比例和反比例的讲解。

如题所述

1)正比例:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。
用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:
x / y = k (一定)
正比例关系的两种相关联的量的变化规律:同时扩大,同时缩小,比值不变。
例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
以上各种商都是一定的,那么被除数和除数所表示的两种相关联的量,成正比例关系。
注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量变化或缩小,但它们相对应的两个数的比值不一定,它们就不能成正比例。
例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系。
2)反比例:两种相关联的量一种量变化,另种量也随着变化,如果这两种量中,相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系。
用字母表示:两种相关联的量,分别用x和y表示,用k表示不变的量,那么反比例关系式是:
xy = k (一定)
反比例关系的两种相关联的量的变化规律是一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变。
例:图上距离一定,实际距离和比例尺是否成反比例。
因为实际距离×比例尺=图上距离(一定)
所以,实际距离和比例尺成反比例。
3.正比例和反比例
相同点:两种量都是相关联的量,一种量变化,另一种量也随着变化。
不同点:两种量成正比例,是一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,它们扩大,缩小的规律是,这两种量相对应的两个数的比值不变,即商一定。两种量成反比例是一种量扩大,另一种量反而缩小一种量缩小,另一种量反而扩大,它们变化的规律是这两种量中,相对应的两个数积不变(一定)。
反比例 反比例关系是通过应用题的总数与份数关系帮助学生认识的。在总数与份数关系中,包含总数、份数和每份数。当总数一定时,每份数和份数是两种相关联毕咐的变量。如果每份数变化,份数也随着变化。同样如果份数变化,每份数也随着变化。它们的变化,无论扩大还是缩小,相对应的两个量的乘积(也就是总数)一定。具体说,当总数一定时,每份数(或份数)扩大或缩小若干倍,份数(或每份数)反而缩小或扩大相同的倍数。简称为“一扩一缩(或一缩一扩)”。具备这种变化关系答伍的每份数和份数成反比例关系。反比例关系在典型应用题中属于归总问题。反映在除法中,当被除数一定,除数和商成反比例关系。在分数中,当分数的分子一定,分母与分数值成反比例关系。在比例中,比的前项一定,比的后项与比值成反比例关系。如果两种量成反比例,那么一种量的任意两个数的比,等于另一种量的两个对应数的反比。如,加工零件的总数一定,是600个。如果每小时加工10个,60个小时完成任务。如果每小时加工20个,30个小时完成任务。每小时加工数两种相关联的量——→两种相关联的量,一种量变化——→一种量变化另一种量也随着变化——→另一种量也随着变化。这两种量中相对应的两个数的比值一定——→这两种量中相对应的两个数的乘积一定再由学生根据自己写出的反比例的意义,举出实例,加以验证。之后,进一步理解反比例的意义。①分析反比例的意义。成反比例的量包括三个数量,一个定量和两个变量。研究两种变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。②反比例实质两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。这两种量叫做成反比例的量。它们的关系叫做反比例关系。比较正、反比例:相同点:①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。②在正、反比例的两个变量中,均是一个量变化,另一种量也随之变化,并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。不同点:正比例的定量是两种变量中相对应的两个数的比值。反比例的定量是两种变量中相对应的两个数的积。正、反比例之间的相互转化:当正比例中的x值(自变量的值),转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例。即,比例尺例1、在比例尺是1∶500000的地图上,量得甲地到乙地的距离是1.8厘米,李林以每小时间4.2千米的速度从甲地到乙地,需要几小时?分析:这道题根据已知条件和所求问题,是已知比例尺和图上距离及速度,所以需先求实际距离,再求学要几小时.解:设甲乙两地的实际距离为 厘米. = =1.8×500000 =900000 900000厘米=9千米 9÷4.2= (小时) 答:需要 小时.
温馨提示:内容为网友见解,仅供参考
无其他回答

解比例.正比例和反比例的讲解。
1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示: ②正比例关系两种相关联的...

解比例.正比例和反比例的讲解。
1)正比例:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:x \/ y...

解比例应用题怎么硬挨知道是反比例还是正比例
正比例和反比例 正比例 ☆知识要点:(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定...

正比例与反比例知识点
1、理解比例的意义和基本性质,会解比例。2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。4...

解比例怎么看正比例和反比例?
正比例是y随着x的增大而增大。它的直线图像是由左到右一直斜着向上。如y=2x, y=3x等。对于y=2x,当x=1时,y=2;当x=2时,y=4.所以它的坐标分别为:(1,2)和(2,4)把这两点连成一条直线,就是一条由左到到右的向上斜线。反比例就是y随着x的增大而减少。它的直线图像是从左到右逐渐...

比、比例、正比例、反比例的相关知识
1:2=4:8 正比例:两种相关联的变量,它们相应的比值一定相等,那么这两个变量之间的关系就叫做正比例关系。如:路程:时间=速度(一定)路程和时间就是正比例关系 圆的周长÷直径=3.14,圆的周长和它的直径就是正比例关系。反比例:两个量的乘积相同,那么这两个量就成反比例。如:速度×时间=...

解比例应用题怎么硬挨知道是反比例还是正比例
正比例和反比例的区别在于,正比例关系中两个量的比值保持不变,而反比例关系中两个量的乘积保持不变。在应用题中,通过总数与份数的关系帮助学生理解反比例关系。理解反比例关系的步骤包括:分析反比例的意义,研究两个变量之间的变化关系,即一种量变化引起另一种量相反的变化。反比例关系的数学表示为...

正比例反比例知识点
知识点整理:1. 理解比例的概念和基本性质,掌握解比例的方法。2. 识别并理解正比例和反比例的意义,能够找出生活中的实例,并运用比例知识解决实际问题。3. 认识正比例关系的图像,能够根据给定的正比例数据在坐标系中绘制图像,并能从图像中找出或估计出相关量的值。4. 了解比例尺的概念,能够计算...

解比例的根据是什么? 怎样判断两个相关联的量是否成正比例或反比例...
解比例的依据是比例的基本性质:比例的外项乘积=比例的内项乘积。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就成正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就...

什么是比例?什么是正比例,什么是反比例?什么是比例的基本性质?
解比例也很好做,就是根据比例的基本性质。比如:x:8=3:44x=3X8x=6(1)正比例:两种相关联的量,一种量增加,另一种量也随着增加,如果这两种量相对应的两个数的比值(也就是商或比值)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.(2)反比例:两种相关联的量,一种量...

相似回答
大家正在搜