高中数学必修1和必修4的公式总结

如题所述

乘法与因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2) 
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b^2-4ac=0 注:方程有两个相等的实根
b^2-4ac>0 注:方程有两个不等的实根 �
b^2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA �
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) �
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) �
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2 
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h �
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-01-06
弦 Sine sin
余弦 Cosine cos
正切 Tangent tan
(或 tg)
余切 Cotangent cot
(或 ctg、ctn)
正割 Secant sec
余割 Cosecant csc
(或 cosec)
第2个回答  2008-12-26
买本星火小册子,什么都有了,还比网上详细,正确些!最主要高中公式都有,而且只要6块8

高中数学必修一、四所有公式
S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h满意请采纳

高中必修一数学公式有哪些?
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。2、tan(A+B)=(tanA+tanB)\/(1-tanAtanB)。3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。4、tan(A-B)=(tanA-tanB)\/(1+tanAtanB)。5、-ctgA+ctgBsin(A+B)\/sinAsinB。数学必修一公式归纳:一、指数与指数幂的运算 1、...

高中数学必修1公式总结
半角公式 sin(A\/2)=√((1-cosA)\/2) sin(A\/2)=-√((1-cosA)\/2) cos(A\/2)=√((1+cosA)\/2) cos(A\/2)=-√((1+cosA)\/2) tan(A\/2)=√((1-cosA)\/((1+cosA)) tan(A\/2)=-√((1-cosA)\/((1+cosA)) ctg(A\/2)=√((1+cosA)\/((1-cosA)) ctg(A\/2)=-√((1+...

高中必修四数学公式有哪些?
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 半角公式 sin(A\/2)=√((1-cosA)\/2) sin(A\/2)=-√((1-cosA)\/2) cos(A\/2)=√((1+cosA)\/2) cos(A\/2)=-√((1+cosA)\/2) tan(A\/2)=√((1-cosA)\/((1+cosA)) tan(A\/2)=-√((1-cosA)\/((1+cosA)) cot(A\/2)=...

高中数学第一册公式
必修 1 公式整理 充分条件 (判定定理)1.如果集合 A 中的任意一个元素都是集合 B 的元素,那么集合 A 是集合 B 的子集。2.如果集合 A 是集合 B 的子集,并且 B 中至少有一个元素不属于 A ,那么集合 A 是集合 B 的真子集。3.如果集合 A 的每一个元素都是集合 B 的元素,集合 B 的...

人教版高中数学必修一、必修二、必修四、必修五的所有公式
四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)\/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)\/(1-10*tanA^2+5*tanA...

高中数学必修一公式总结。
②数学式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A...

数学必修四的所有函数公式,谢谢
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan...

高中数学有什么内容?
意义一、正确地理解概念 二、对不同的概念,要采取不同的方法 三、在新旧概念之间掌握概念 高中数学公式口诀 数学 必修1 1. 集合 2. 函数概念与基本初等函数I 数学 必修2 1. 立体几何初步 2. 平面解析几何初步 数学 必修3 1. 算法初步 2. 统计 3. 概率 数学 必修4 1. 三角函数 2. 平面...

高中数学必修4三角函数公式大全
高中数学必修4三角函数公式大全:一、基本三角函数公式 1. 正弦函数公式:sin。表示在直角三角形中,α角的对边与斜边的比值。2. 余弦函数公式:cos。表示在直角三角形中,α角的邻边与斜边的比值。3. 正切函数公式:tan。表示在直角三角形中,α角的对边与邻边的比值。二、诱导公式...

相似回答